• Title/Summary/Keyword: gene mutations

Search Result 994, Processing Time 0.034 seconds

A Case of Hunter Syndrome Diagnosed at 7 Months of Age by Exome Sequencing (엑솜시퀀싱을 통해 생후 7개월에 진단된 헌터증후군)

  • Song, Ari;Lee, Jin Sung;Im, Minji;Park, Hyung Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • Hunter syndrome, also known as mucopolysaccharidosis Type II (MPS II), is one of the lysosomal storage diseases caused by a lack of the enzyme iduronate 2-sulfatase (I2S). Lack of the I2S enzyme activity leads to accumulation of the glycosaminoglycans (GAG), causing dysfunction of multiple organs and systems. MPS II is an X-linked recessive disease due to mutation of IDS gene located on long arm of the X chromosome (Xq28). To date, more than 350 mutations of IDS gene have been identified in Hunter syndrome. Phenotypes of MPS II are classified as either severe or attenuated depending on the degree of cognitive impairment. Because the phenotype of MPS II is related to the type of mutation, identifying mutations is useful in predicting prognosis. We recently had a case of MPS II diagnosed by exome sequencing in a 7 month old boy with infantile spasm uncontrolled by AED. He was diagnosed with hearing loss at 2 months of age, and he took vigabatrin and prednisolone to control infantile spasms diagnosed at 3 months of age. At 6 months of age, whole exome sequencing was performed to evaluate the infantile spasm and hearing loss in this patient, and the mutation c.851C>T (p.Pro284Leu) inherited from hemizygous mother was revealed. The results of urine Cetylpyridinium Chloride (CPC) precipitation test, which were negative until 8 months of age, were positive from 9 months of age. We report a case of MPS II diagnosed by exome sequencing and treated through enzyme replacement therapy from 9 months after birth.

  • PDF

Correlation Between Unidentified Bright Objects on Brain Magnetic Resonance Imaging (MRI) and Cerebral Glucose Metabolism in Patients with Neurofibromatosis Type 1

  • Sohn, Young Bae;An, Young Sil;Lee, Su Jin;Choi, Jin Wook;Jeong, Seon-Yong;Kim, Hyon-Ju;Ko, Jung Min
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • Purpose: Neurofibromatosis type 1 (NF1), which is caused by mutations of the NF1 gene, is the most frequent single gene disorder to affect the nervous system. Unidentified bright objects (UBOs) are commonly observed on brain magnetic resonance imaging (MRI) in patients with NF1. However, their clinical and pathologic significance is not well understood. The purpose of this study was to investigate the correlation between UBOs and cerebral glucose metabolism measured by $^{18}F$-2-Fluoro-2-deoxy-D-glucose ($^{18}F$-FDG) positron emission tomography (PET) in Korean patients with NF1. Materials and Methods: Medical records of 75 patients (34 males and 41 females) with NF1 who underwent brain MRI and PET between 2005 and 2011 were evaluated retrospectively. Clinical data including demographics, neurological symptoms, and brain MRI and PET findings, were reviewed. Results: UBOs were detected in the brain MRI scans of 31 patients (41%). The region most frequently affected by UBOs was the basal ganglia. The most frequent brain PET finding was thalamic glucose hypometabolism (45/75, 60%). Of the 31 patients with UBOs, 26 had thalamic glucose hypometabolism on brain PET, but the other 5 had normal brain PET findings. Conversely, of the 45 patients with thalamic glucose hypometabolism on brain PET, 26 showed UBOs on their brain MRI scans, but 19 had normal findings on brain MRI scans. Conclusion: UBOs on brain MRI scans and thalamic glucose hypometabolism on PET appear to be 2 distinctive features of NF1 rather than correlated symptoms. Because the clinical significance of these abnormal imaging findings remains unclear, a longitudinal follow-up study of changes in clinical manifestations and imaging findings is necessary.

Relationship between genetic mutations and diabetes in non-insulin dependent diabetic mellitus (NIDDM) (인슈린비의존성 당뇨병(NIDDM)에서 유전적 변이와 체질의학적 관계)

  • Kim, Cheorl-Ho;Lee, Tae-Kyun;Chong, Ji-Choen;Park, Won-Hwan;Kim, Yong-Ju;Kim, June-Ki;Park, Sun-Dong;Nam, Kyung-Soo;Kim, Yong Sung
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.7 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • A simple and rapid FoLT(formamide low temperature)-PCR, whereby human genomic DNA from blood can be amplified without DNA preparative stps, is described using human insulin genes. By applicatin of FoLT-PCR in human insulin genes, intragenic polymorphism in non-coding regions of the human insulin gene was shown after amplification and analysis by restriction enzyme digestion. All nucleotide sequences were the same as the reported, and four necleotides, at 4 different positions were polymorphic, and polymorphic alleles ${\alpha}4$, ${\alpha}5$, ${\alpha}6$, and ${\beta}2$ were identified. The new alleles were originated from homologous recombination between the ${\alpha}1$ and ${\beta}1$ alleles, and the alleles were founded in heterozygotes only. Although allele ${\alpha}1$ was dominant, the new alleles and ${\beta}1$ were recessive. From the results, it was suggested that the new method of FoLT-PCR was highly applicable in genetic variation analysis.

  • PDF

A Case of a 2-year-old Girl with Type I Gaucher Disease Presenting with Growth Retardation and Leg Pain (2세 여아에서 성장 부진과 다리 통증을 동반한 1형 고셔병 증례)

  • Park, Yesul;Hwang, Jae-Yeon;Hwang, Eun Ha;Cheon, Chong Kun;Lee, Beom Hee;Yoo, Han-Wook;Kim, Yoo-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Gaucher disease (GD) is caused by the deficiency of glucocerebrosidase. In pediatric patients with GD, especially Type I GD, enzyme replacement therapy (ERT) can reduce the hepatosplenomegaly and improve the hematologic finding and growth velocity. Herein, we report a 2-year-old girl with Type I GD presented with hepatosplenomegaly, bone pain and growth retardation. A 2 year-old-girl was referred to our hospital due to severe hepatosplenomegaly and growth retardation. She suffered from both leg pain and chronic fatigue. Simple x-ray showed widened distal long bones like that of an 'Erlenmeyer flask' which is associated with GD. The laboratory test showed anemia and thrombocytopenia. The enzyme activity was markedly reduced and the direct sequencing of the GBA gene showed the compound heterozygous mutations, p.G46E and p.L444P. As the G46E have been considered as the protective gene against neuronopathic genotype, we could assess the Type I GD in this patient. After one year of ERT, the growth velocity became 11 cm per year. Bone pain and fatigue disappeared. The volume of liver and spleen was reduced from $683cm^3$ and $703cm^3$ to $590cm^3$ and $235cm^3$, respectively. Although GD is an extremely rare disease in Korea, growth retardation and bone pain in children are the important signs which lead to early detection of GD and a simple radiologic finding is helpful to assess the GD at outpatient clinic. We highlight that the early diagnosis and early ERT is important for good growth and outcome for pediatric patients with GD.

  • PDF

Biological Activity of Recombinant Human Granulocyte Colony-Stimulating Factor and Isolation of the Somatic Cell Transfected EGFP-hG-CSF Gene (유전자 재조합 인간의 G-CSF의 생리활성과 EGFP-hG-CSF유전자가 도입된 체세포의 분리)

  • Park, Jong-Ju;Min, Kwan-Sik
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.912-917
    • /
    • 2008
  • To investigate the biological activity of recombinant human granulocyte colony-stimulating factor (rec-hG-CSF) in mammalian cells, hG-CSF gene was cloned using the eDNA extracted from the human squamous carcinoma cell lines and rec-hG-CSF was produced in CHO cell lines. To analyze the biological activity in vivo, the rec-hG-CSF protein was injected into mice subcutaneously on days 0 and 2. Blood was withdrawn for white blood cell (WBC) determination 5 days after the first injection. WBC values were found to have increased significantly. A pEGFP-mUII-hG-CSF vector was transfected into somatic cell lines isolated from bovine fetal cells. The colony expressing EGFP signals was observed with a confocal microscope. These data suggest that the rec-hG-CSF produced in this study has potent activity in vivo. Thus, the results of this biological activity show that rec-hG-CSF can be enhanced considerably by genetic engineering that affects potential activity, including mutations, which add the oligosaccharide chain and construct double-fusion proteins. A pEGFP-mUII-hG-CSF vector can be utilized for the production of cloned transgenic livestock.

KiSS-1 : A Novel Neuropeptide in Mammalian Reproductive System (KiSS-1 : 포유동물 생식계에서의 새로운 신경펩타이드)

  • Lee, Sung-Ho;Choe, Don-Chan
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • The hypothalamo-pituitary-gonadal hormone axis is centrally controlled by a complex regulatory network of excitatory and inhibitory signals, that is dormant during infantile and juvenile periods and activated at puberty. The kisspeptins are the peptide products of the KiSS-1 gene and the endogenous agonists for the G protein-coupled receptor 54(GPR54). Although KiSS-1 was initially discovered as a metastasis suppressor gene, a recent evidence suggests the KiSS-1/GPR54 system is a key regulator of the reproductive system. Yet the actual role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion remains largely unexplored, the system could be the first missing link in the reproductive hormonal axis. Central or peripheral administration of kisspeptin stimulates the hypothalamic-pituitary-gonadal axis, increasing circulating gonadotropin levels in rodents, sheep, monkey and human models. These effects appear likely to be mediated via the hypothalamic GnRH neuron system, although kisspeptins may have direct effects on the anterior pituitary gland. The loss of function mutations of the GPR54(GPR54-/-) have been associated with lack of puberty onset and idiopathic hypogonadotropic hypogonadism(IHH). So kisspeptin infusion may provide a novel mechanism for HPG axis manipulation in disorders of the reproductive system.

  • PDF

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

Effect of Extracellular Potassium on Delayed Rectifier Potassium Channel Proteins of KCNQ3 and KCNQ5 in Familial Hypokalemic Periodic Paralysis (가족성 저칼륨성 주기성 마비에서 세포외 칼륨농도가 지연성 정류형 채널을 형성하는 KCNQ3와 KCNQ5 단백질에 미치는 효과)

  • Kim, Sung-Jo;Kim, Dong-Hyun;Kim, June-Bum
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1484-1488
    • /
    • 2009
  • Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant muscle disorder characterized by episodic attacks of muscle weakness with concomitant hypokalemia. Mutations in either a calcium channel gene (CACNA1S) or a sodium channel gene (SCN4A) have been shown to be responsible for this disease. The combination of sarcolemmal depolarization and hypokalemia has been attributed to abnormalities of the potassium conductance governing the resting membrane potential. To understand the pathophysiology of this disorder, we examined both mRNA and protein levels of delayed rectifier potassium channel genes, KCNQ3 and KCNQ5, in skeletal muscle fibers biopsied from patients with HOKOur results showed an increase in the cytoplasmic level of KCNQ3 protein in patients' cells exposed to 50 mM external concentration of potassium. However, mRNA levels of both channel genes did not show significant change in the same condition. Our results suggest that long term exposure of skeletal muscle cells in HOKPP patients to high extracellular potassium alters the KCNQ3 localization, which could possibly hinder the normal function of this channel protein. These findings may provide an important clue to understanding the molecular mechanism of familial hypokalemic periodic paralysis.

A Case of Neonatal Onset Propionic Acidemia with Mild Clinical Presentations (경한 임상 경과를 보인 신생아 시기의 프로피온산혈증 1례)

  • Kim, Kyung-Ran;Kim, Jinsup;Huh, Rim;Park, Hyung-Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • Propionic acidemia (PA) is an autosomal recessively inherited disorder of the organic acid metabolism. It is caused by a deficiency of propionyl-CoA carboxylase (PCC). PCC is a heteropolymeric enzyme composed of ${\alpha}$- and ${\beta}$-subunits. The clinical symptoms of PA are heterogeneous and present vomiting, dehydration, hypotonia, and lethargy, and it can result in death. The typical presentations of neonatal onset PA are life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of neonatal onset PA with mild clinical presentations. She was born to a healthy mother without complications. No significant illness was observed until nine days after birth. She started exhibiting poor oral feeding, vomiting, lethargy, and hypotonia at ten days old. Her laboratory results showed mild hyperammonemia and acidosis. The initial diagnosis was neonatal sepsis and she was treated with antibiotics. However, her clinical symptoms didn't improve. So we considered a metabolic disease. She was given nothing by mouth and intravenous hydration and nutrition support was performed. Propionylglycine and 3-hydroxypropionic acid were showed high concentrations in urine by gas chromatograph mass spectrometry (GC-MS). C3 level of acylcarnitine analysis elevated 10.4 uM/L (range, 0.200-5.00) in plasma. We took gene analysis for PA to be based on the symptoms and laboratory results. We detected PCCB gene mutation and diagnosed PA. She survived without severe neurologic defects and complications and was hospitalized only three times with upper respiratory tract infections for 7 years. We report a case of a ten days old neonate with PA presenting without severe metabolic acidosis and hyperammonemia who was effectively treated with early aggressive care and conventional methods.

  • PDF

Genetic Diversity and Natural Selection in 42 kDa Region of Plasmodium vivax Merozoite Surface Protein-1 from China-Myanmar Endemic Border

  • Zhou, Xia;Tambo, Ernest;Su, Jing;Fang, Qiang;Ruan, Wei;Chen, Jun-Hu;Yin, Ming-Bo;Zhou, Xiao-Nong
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.473-480
    • /
    • 2017
  • Plasmodium vivax merozoite surface protein-1 (PvMSP1) gene codes for a major malaria vaccine candidate antigen. However, its polymorphic nature represents an obstacle to the design of a protective vaccine. In this study, we analyzed the genetic polymorphism and natural selection of the C-terminal 42 kDa fragment within PvMSP1 gene ($PvMSP1_{42}$) from 77 P. vivax isolates, collected from imported cases of China-Myanmar border (CMB) areas in Yunnan province and the inland cases from Anhui, Yunnan, and Zhejiang province in China during 2009-2012. Totally, 41 haplotypes were identified and 30 of them were new haplotypes. The differences between the rates of non-synonymous and synonymous mutations suggest that $PvMSP1_{42}$ has evolved under natural selection, and a high selective pressure preferentially acted on regions identified of $PvMSP1_{33}$. Our results also demonstrated that $PvMSP1_{42}$ of P. vivax isolates collected on China-Myanmar border areas display higher genetic polymorphisms than those collected from inland of China. Such results have significant implications for understanding the dynamic of the P. vivax population and may be useful information towards China malaria elimination campaign strategies.