References
- Matern H, Yang X, Andrulis E, Sternglanz R, Trepte HH, Gallwitz D. A novel Golgi membrane protein is part of a GTPase-binding protein complex involved in vesicle targeting. EMBO J 2000;19:4485-92. https://doi.org/10.1093/emboj/19.17.4485
- Calero M, Winand NJ, Collins RN. Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett 2002;515:89-98. https://doi.org/10.1016/S0014-5793(02)02442-0
- Yang X, Matern HT, Gallwitz D. Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p. EMBO J 1998; 17:4954-63. https://doi.org/10.1093/emboj/17.17.4954
- Shakoori A, Fujii G, Yoshimura S, et al. Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem Biophys Res Commun 2003; 312:850-7. https://doi.org/10.1016/j.bbrc.2003.10.197
- Soonthornsit J, Sakai N, Sasaki Y, Watanabe R, Osako S, Nakamura N. YIPF1, YIPF2, and YIPF6 are medial-/trans-Golgi and trans-Golgi network-localized Yip domain family proteins, which play a role in the Golgi reassembly and glycan synthesis. Exp Cell Res 2017;353:100-8. https://doi.org/10.1016/j.yexcr.2017.03.011
- Tanimoto K, Suzuki K, Jokitalo E, et al. Characterization of YIPF3 and YIPF4, cis-Golgi Localizing Yip domain family proteins. Cell Struct Funct 2011;36:171-85. https://doi.org/10.1247/csf.11002
- Barrowman J, Wang W, Zhang Y, Ferro-Novick S. The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J Biol Chem 2003;278: 19878-84. https://doi.org/10.1074/jbc.M302406200
- Heidtman M, Chen CZ, Collins RN, Barlowe C. Yos1p is a novel subunit of the Yip1p-Yif1p complex and is required for transport between the endoplasmic reticulum and the Golgi complex. Mol Biol Cell 2005;16:1673-83. https://doi.org/10.1091/mbc.e04-10-0873
- Prost S, LeDiscorde M, Haddad R, Gluckman JC, Canque B, Kirszenbaum M. Characterization of a novel hematopoietic marker expressed from early embryonic hematopoietic stem cells to adult mature lineages. Blood Cells Mol Dis 2002;29: 236-48. https://doi.org/10.1006/bcmd.2002.0563
- Guo C, Zhu Z, Guo Y, et al. Heparanase upregulation contributes to porcine reproductive and respiratory syndrome virus release. J Virol 2017;91:e00625-17. https://doi.org/10.1128/JVI.00625-17
- Sanchez-Cordon PJ, Montoya M, Reis AL, Dixon LK. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet J 2018;233:41-8. https://doi.org/10.1016/j.tvjl.2017.12.025
- Zhao S, Zhu M, Chen H. Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli. J Anim Sci Biotechnol 2012;3:34. https://doi.org/10.1186/2049-1891-3-34
- Tamassia N, Le Moigne V, Rossato M, et al. Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J Immunol 2008;181: 6563-73. https://doi.org/10.4049/jimmunol.181.9.6563
- Li A, Chen Y, Zhao X, et al. Characterization and transcriptional regulation analysis of the porcine TNFAIP8L2 gene. Mol Genet Genomics 2010;284:185-95. https://doi.org/10.1007/s00438-010-0558-z
- Cong P, Li A, Ji Q, Chen Y, Mo D. Molecular analysis of porcine TDRD10 gene: a novel member of the TDRD family. Gene 2014;548:190-7. https://doi.org/10.1016/j.gene.2014.07.026
- Zhao X, Huang Z, Liu X, et al. The switch role of the Tmod4 in the regulation of balanced development between myogenesis and adipogenesis. Gene 2013;532:263-71. https://doi.org/10.1016/j.gene.2013.08.088
- Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006;16:995-1004. https://doi.org/10.1101/gr.5217506
- Li M, Chen H, Chen L, Chen Y, Liu X, Mo D. miR-709 modul-ates LPS-induced inflammatory response through targeting GSK-3beta. Int Immunopharmacol 2016;36:333-8. https://doi.org/10.1016/j.intimp.2016.04.005
- Reimer T, Brcic M, Schweizer M, Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol 2008;83:1249-57. https://doi.org/10.1189/jlb.060 7412
- Ma G, Huang J, Sun N, et al. Molecular characterization of the porcine GBP1 and GBP2 genes. Mol Immunol 2008;45:2797-807. https://doi.org/10.1016/j.molimm.2008.02.007
- Dwyer J, Li H, Xu D, Liu JP. Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family. Ann NY Acad Sci 2007;1114:36-47. https://doi.org/10.1196/annals.1396.022
- Torres A, Alshalalfa M, Davicioni E, et al. ETS2 is a prostate basal cell marker and is highly expressed in prostate cancers aberrantly expressing p63. Prostate 2018;78:896-904. https://doi.org/10.1002/pros.23646
- Zhang G, Zhang L, Yang X, et al. High ETS2 expression predicts poor prognosis in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Ann Hematol 2019;98:519-25. https://doi.org/10.1007/s00277-018-3440-4
- Zhang GW, Tian X, Li Y, Wang ZQ, Li XD, Zhu CY. Down-regulation of ETS2 inhibits the invasion and metastasis of renal cell carcinoma cells by inducing EMT via the PI3K/Akt signaling pathway. Biomed Pharmacother 2018;104:119-26. https://doi.org/10.1016/j.biopha.2018.05.029
- Roussel-Gervais A, Naciri I, Kirsh O, et al. Loss of the Methyl-CpG-binding protein ZBTB4 alters mitotic checkpoint, increases aneuploidy, and promotes tumorigenesis. Cancer Res 2017;77: 62-73. https://doi.org/10.1158/0008-5472.CAN-16-1181
- Weber A, Marquardt J, Elzi D, et al. Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO J 2008;27:1563-74. https://doi.org/10.1038/emboj.2008.85
- Yu Y, Shang R, Chen Y, et al. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother 2018;100:108-15. https://doi.org/10.1016/j.biopha.2018.01.132
- Kaplan J, Calame K. The ZiN/POZ domain of ZF5 is required for both transcriptional activation and repression. Nucleic Acids Res 1997;25:1108-16. https://doi.org/10.1093/nar/25.6.1108
- Nylen C, Aoi W, Abdelmoez AM, et al. IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1. Am J Physiol Endocrinol Metab 2018;315:E995-1004. https://doi.org/10.1152/ajpendo.00398.2017
Cited by
- P38 MAPK pathway regulates the expression of resistin in porcine alveolar macrophages via Ets2 during Haemophilus parasuis stimulation vol.128, 2022, https://doi.org/10.1016/j.dci.2021.104327