• Title/Summary/Keyword: gene manipulation

Search Result 126, Processing Time 0.023 seconds

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.

Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review

  • Hong, Bok Sil;Kim, Myoung-Ryu
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • [Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such "COVID-19 or microbiota," "microbiota or microRNA," and "COVID-19 or probiotics" in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.

KiSS-1 : A Novel Neuropeptide in Mammalian Reproductive System (KiSS-1 : 포유동물 생식계에서의 새로운 신경펩타이드)

  • Lee, Sung-Ho;Choe, Don-Chan
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • The hypothalamo-pituitary-gonadal hormone axis is centrally controlled by a complex regulatory network of excitatory and inhibitory signals, that is dormant during infantile and juvenile periods and activated at puberty. The kisspeptins are the peptide products of the KiSS-1 gene and the endogenous agonists for the G protein-coupled receptor 54(GPR54). Although KiSS-1 was initially discovered as a metastasis suppressor gene, a recent evidence suggests the KiSS-1/GPR54 system is a key regulator of the reproductive system. Yet the actual role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion remains largely unexplored, the system could be the first missing link in the reproductive hormonal axis. Central or peripheral administration of kisspeptin stimulates the hypothalamic-pituitary-gonadal axis, increasing circulating gonadotropin levels in rodents, sheep, monkey and human models. These effects appear likely to be mediated via the hypothalamic GnRH neuron system, although kisspeptins may have direct effects on the anterior pituitary gland. The loss of function mutations of the GPR54(GPR54-/-) have been associated with lack of puberty onset and idiopathic hypogonadotropic hypogonadism(IHH). So kisspeptin infusion may provide a novel mechanism for HPG axis manipulation in disorders of the reproductive system.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (lpomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

Development of New Vector Systems as Genetic Tools Applicable to Mycobacteria (Mycobacteria에 적용 가능한 genetic tool로서의 새로운 vector system 개발)

  • Jeong, Ji-A;Lee, Ha-Na;Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.290-298
    • /
    • 2013
  • The genus Mycobacterium includes crucial animal and human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium bovis. Although it is important to understand the genetic basis for their virulence and persistence in host, genetic analysis in mycobacteria was hampered by a lack of sufficient genetic tools. Therefore, many functional vectors as molecular genetic tools have been designed for understanding mycobacterial biology, and the application of these tools to mycobacteria has accelerated the study of mechanisms involved in virulence and gene expression. To overcome the pre-existing problems in genetic manipulation of mycobacteria, this paper reports new vector systems as effective genetic tools in Mycobacterium smegmatis. Three vectors were developed; pKOTs is a suicide vector for mutagenesis containing a temperature-sensitive replication origin (TSRO) and the sacB gene encoding levansucrase as a counterselectable marker. pMV306lacZ is an integrative lacZ transcriptional fusion vector that can be inserted into chromosomal DNA by site-specific recombination. pTnMod-OKmTs is a minitransposon vector harboring the TSRO that can be used in random mutagenesis. It was demonstrated in this study that these vectors effectively worked in M. smegmatis. The vector systems reported here are expected to successfully applicable to future research of mycobacterial molecular genetics.

Recombinant Expression of Agarases: Origin, Optimal Condition, Secretory Signal, and Genome Analysis (한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.304-312
    • /
    • 2020
  • Agarase can be used in the field of basic science, as well as for production of agar-derived high-functional oligosaccharides and bioenergy production using algae. In 2012, we summarized the classification, origin, production, and applications of agar. In this paper, we briefly review the literature on the recombinant expression of agarases from 2012 to the present. Agarase genes originated from 19 genera, including Agarivorans, Flammeovirga, Pseudoalteromonas, Gayadomonas, Catenovulum, Microbulbifer, Cellulophaga, Saccharophagus, Simiduia, and Vibrio. Of the 47 recombinant agarases, there were only two α-agarases, while the rest were β-agarases. All α-agarases produced agarotetraose, while β-agarases yielded many neoagarooligosaccharides ranging from neoagarobiose to neoagarododecaose. The optimum temperature ranged between 25 and 60℃, and the optimum pH ranged from 3.0 to 8.5. There were 14 agarases with an optimum temperature of 50℃ or higher, where agar is in sol state after melting. Artificial mutations, including manipulation of carbohydrate-binding modules (CBM), increased thermostability and simultaneously raised the optimum temperature and activity. Many hosts and secretion signals or riboswitches have been used for recombinant expression. In addition to gene recombination based on the amino acid sequence after agarase purification, recombinant expression of the putative agarase genes after genome sequencing and metagenome-derived agarases have been studied. This study is expected to be actively used in the application fields of agarase and agarase itself.

Induction of Two Types of Gynogenetic Diploid of Sweet Fish, Plecoglossus altivelis and Verification by Isozyme Marker (은어 2종류의 자성발생 2배체의 유도와 Isozyme 유전자에 의한 배수성의 확인)

  • 손진기
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.79-85
    • /
    • 2000
  • This study was made to optimize the conditions needed to produce two types of gynogenetic diploids in the sweet fish, Plecoglossus altivelis. Firstly, ultraviolet (UV) ray doses between 3,000 erg to 14,000 erg/$\textrm{mm}^2$ were tested to inactivate sperm genetically. Based on the appearance of the haploid syndromes in the embryo, a dose of UV ray 6000~7000 erg was required to inactivate sperm genetically. Then, cold shock treatment at 1~2$^{\circ}C$ for 15~30 min were conducted to retain the 2nd polar body in inseminated egg. The best elapsed time before the start of the cold shock was examined between 5~8 min. The experiments in which began 5 min after insemination at 1~2$^{\circ}C$ during 17.5 min gave 21.2% survival rate and 89.7% normal eyed embryo rate. The gynogenetic diploid produced by suppression of the first cleavage, a considerably high number of heteroploids appeared and high mortality was observed at the metamorphosis stage, so further investigation is needed. The production of gynogenetic diploids were confirmed by GPI isozyme marker. The heterozygous type in Gpi-1 locus was observed in the meiotic-G2N as a result of gene-centromere recombination during meiosis. The heterozygous type was never observed in mitotic-G2N and showed segregation into two homozygous types at Gpi-1 locus.

  • PDF

Recent Advances in Cancer Diagnosis: On an Overview of Diagnostic Cytopathologic Modalities and Ancillary Techniques (세포병리학적 기초에 의한 암진단의 발전: 진단방법과 보조기법)

  • Kim, Ki-Tai;Ham, Eui-Keun
    • The Korean Journal of Cytopathology
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • From the concepts of cellular pathology and of exfoliative cytology, as elucidated by Virchow and Papanicolaou respectively in the late 19th and early 20th century, have evolved the primary methods for the diagnosis of cancer today. From Papanicolaou's concept of exfoliative cytology developed fine needle aspiration biopsy in the early 1960's, this has become a major diagnostic procedure and has contributed to a significant reduction in open biopsies and, therefore, to medical cost-effectiveness immunobiochemical techniques provided us with a supplement to cancer diagnosis in the 1980's. The immunoperoxidase method, using monoclonal antibodies, is applied primarily as an ancillary measure to elucidate the nature of cancers The availability of specific monoclonal antibodies has greatly facilitated the identification of cell products or surface markers. For example, antibodies directed against intermediate filaments have proved to be of value in determining the histogenesis oi poorly differentiated neoplasms. Tumor markers may serve as biochemical indicators of the presence of a neoplasm. They can be detected In plasma and other body fluids. Their concentration can be applied as a diagnostic test, for monitoring the clinical course of known cancer, and as a screening measure to detect certain cancers in a population at risk. Flow cytometry is a useful tool for distinguishing several cell characteristics, such as the immunophenotype of leukemia-lymphoma cells, the DNA content of neoplastic cells, and cell proliferation rate. Molecular biologic techniques provided a giant step for the management of cancer patients encompassing diagnosis, prognostic evaluation, and therapy. Nucleic acid hybridization techniques are utilized as Southern, Northern, and dot blots and in situ hybridization. Molecular biology and its techniques may bring a blight new horizon for understanding cancer biology and in designing therapy on the basis of gene manipulation.

  • PDF

The effects of SSI Argumentation Program on the Preservice Biology Teachers' Decision-Making Types and Communication Ability (과학기술과 관련된 사회적 쟁점에 대한 논증 프로그램이 예비 생물교사들의 의사결정 유형과 의사소통 능력에 미치는 영향)

  • Kim, Sun Young
    • Journal of Science Education
    • /
    • v.42 no.1
    • /
    • pp.12-26
    • /
    • 2018
  • This study examined the effects of SSI argumentation program on the preservice biology teachers' decision-making types and communication ability. The SSI argumentation program was developed based on 'Social Decision-Making & Problem-Solving strategy' and Toulmin's argumentation pattern. The preservice teachers had opportunities of SSI argumentation through small group discussions. They were asked to identify the issues regarding SSI, think of solutions, and make a decision along with claims, warrants, data, and rebuttals. The preservice biology teachers experienced four SSI topics of abortion, euthanasia, gene manipulation, artificial intelligence. The results indicated that the preservice biology teachers significantly improved the communication ability after the intervention, but they did not change their types of decision-making. In addition, after the intervention, the Pearson correlation results indicated that 'the logical type' of decision-making significantly relates to the communication ability(p<.01). The preservice biology teachers mentioned that they improved their ability of considering warrants, data, background information, context, and rebuttals. Further, the preserivce biology teachers mentioned that they became take an interest in socioscientific issues and improved their ability of accepting criticism from others as well as caring about others when they argue each other. This study implicated that the SSI argumentation program has effects on improving personality education in school science.