Next-generation sequencing (NGS) technologies have changed the process of genetic diagnosis from a gene-by-gene approach to syndrome-based diagnostic gene panel sequencing (DPS), diagnostic exome sequencing (DES), and diagnostic genome sequencing (DGS). A priori information on the causative genes that might underlie a genetic condition is a prerequisite for genetic diagnosis before conducting clinical NGS tests. Theoretically, DPS, DES, and DGS do not require any information on specific candidate genes. Therefore, clinical NGS tests sometimes detect disease-related pathogenic variants in genes underlying different conditions from the initial diagnosis. These clinical NGS tests are expensive, but they can be a cost-effective approach for the rapid diagnosis of rare disorders with genetic heterogeneity, such as the glycogen storage disease, familial intrahepatic cholestasis, lysosomal storage disease, and primary immunodeficiency. In addition, DES or DGS may find novel genes that that were previously not linked to human diseases.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1084-1087
/
2013
텍스트마이닝은(Text mining) 바이오분야에서 사용되는 도구 중 하나이다. 본 논문에서는 전립선암(Prostate cancer)과 관련된 질병 유전자(Disease gene)를 찾기 위해 텍스트마이닝을 이용하여 유전자 네트워크(Gene-network)를 구축하였다. 추가적으로 구글(Google) 검색을 통해 네트워크 내의 유전자 노드(Node)들 사이의 간선(Edge)에 새로운 가중치(Weight)를 추가하고 네트워크를 재구성하였다. 구축된 네트워크에서 노드와 노드 사이의 가중치를 기반으로 전립선암과 관련된 질병 유전자를 추출하였다. 본 논문의 방법은 성공적으로 네트워크를 구축하고 질병 유전자를 찾았으며, 구글 데이터를 사용하지 않고 네트워크를 구축하는 경우보다 더 높은 정확성을 입증했다.
Gene structure prediction, which is to predict protein coding regions in a given nucleotide sequence, is the most important process in annotating genes and greatly affects gene analysis and genome annotation. As eukaryotic genes have more complicated stuructures in DNA sequences than those of prokaryotic genes, analysis programs for eukaryotic gene structure prediction have more diverse and more complicated computational models. We have developed EGSP, a eukaryotic gene structure program, using duration hidden markov model. The program consists of two major processes, one of which is a training process to produce parameter values from training data sets and the other of which is to predict protein coding regions based on the parameter values. The program predicts multiple genes rather than a single gene from a DNA sequence. A few computational models were implemented to detect signal pattern and their scanning efficiency was tested. Prediction performance was calculated and was compared with those of a few commonly used programs, GenScan, GeneID and Morgan based on a few criteria. The results show that the program can be practically used as a stand-alone program and a module in a system. For gene prediction of eukaryotic microbial genomes, training and prediction analysis was done with Saccharomyces chromosomes and the result shows the program is currently practically applicable to real eukaryotic microbial genomes.
Kim, Dae-Won;Yang, Joshua SungWoo;Kim, Pan-Jun;Chu, In-Sun;Jeong, Ha-Woong;Park, Hong-Seog
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.361-365
/
2005
Over the past few years, the complex and subtle roles of microRNA (miRNA) in gene regulation have been increasingly appreciated. Computational approaches have played one of important roles in identifying miRNAs from plant and animals, as well as in predicting their putative gene target. We present a new approach of comprehensive analysis of the evolutionarily conserved element scores and applied data compression technique to detect putative miRNA genes. We used the evolutionarily conserved elements [19] (see more detail on method and material) to calculate for base-by-base along the candidate pre-miRNA gene region by detecting common conserved pattern from target sequence. We applied the data compression technique [20] to detect unknown miRNA genes. This zipping method devises, without loss of generality with respect to the nature of the character strings, a method to measure the similarity between the strings under consideration [20]. Our experience to using our new computational method for detecting miRNA gene identification (or miRNA gene prediction) has been stratified and we were able to find 28 putative miRNA genes.
Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.
Gene expression profile is numerical data of gene expression level from organism, measured on the microarray. Generally, each specific tissue indicates different expression levels in related genes, so that we can classify disease with gene expression profile. Because all genes are not related to disease, it is needed to select related genes that is called feature selection, and it is needed to classify selected genes properly. This paper Proposes GA based method for searching optimal ensemble of feature-classifier pairs that are composed with seven feature selection methods based on correlation, similarity, and information theory, and six representative classifiers. In experimental results with leave-one-out cross validation on two gene expression Profiles related to cancers, we can find ensembles that produce much superior to all individual feature-classifier fairs for Lymphoma dataset and Colon dataset.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.407-411
/
2005
KUGI (Korean UniGene Information) database contains the annotation information of the cDNA sequences obtained from the disease samples prevalent in Korean. A total of about 157,000 5'-EST high throughput sequences collected from cDNA libraries of stomach, liver, and some cancer tissues or established cell lines from Korean patients were clustered to about 35,000 contigs. From each cluster a representative clone having the longest high quality sequence or the start codon was selected. We stored the sequences of the representative clones and the clustered contigs in the KUGI database together with their information analyzed by running Blast against RefSeq, human mRNA, and UniGene databases from NCBI. We provide a web-based search engine fur the KUGI database using two types of user interfaces: attribute-based search and similarity search of the sequences. For attribute-based search, we use DBMS technology while we use BLAST that supports various similarity search options. The search system allows not only multiple queries, but also various query types. The results are as follows: 1) information of clones and libraries, 2) accession keys, location on genome, gene ontology, and pathways to public databases, 3) links to external programs, and 4) sequence information of contig and 5'-end of clones. We believe that the KUGI database and search system may provide very useful information that can be used in the study for elucidating the causes of the disease that are prevalent in Korean.
There are lots of studies attempting to identify the expression changes in oral squamous cell carcinoma. Most studies include insufficient samples to apply statistical methods for detecting significant gene sets. This study combined two small microarray datasets from a public database and identified significant genes associated with the progress of oral squamous cell carcinoma. There were different expression scales between the two datasets, even though these datasets were generated under the same platforms - Affymetrix U133A gene chips. We discretized gene expressions of the two datasets by adjusting the differences between the datasets for detecting the more reliable information. From the combination of the two datasets, we detected 51 significant genes that were upregulated in oral squamous cell carcinoma. Most of them were published in previous studies as cancer-related genes. From these selected genes, significant genetic pathways associated with expression changes were identified. By combining several datasets from the public database, sufficient samples can be obtained for detecting reliable information. Most of the selected genes were known as cancer-related genes, including oral squamous cell carcinoma. Several unknown genes can be biologically evaluated in further studies.
Journal of the Korean Data and Information Science Society
/
v.20
no.2
/
pp.311-319
/
2009
A robust L1 data depth was used in clustering and classification, so called DDclus and DDclass by Jornsten (2004). SVM-based classification works well in most of the situation but show some weakness in the presence of outliers. Proper gene selection is important in classification since there are so many redundant genes. Either by selecting appropriate genes or by gene clustering combined with classification method enhance the overall performance of classification. The performance of depth based method are evaluated among several SVM-based classification methods.
Mouse models are crucial for the functional annotation of human genome. Gene modification techniques including gene targeting and gene trap in mouse have provided powerful tools in the form of genetically engineered mice (GEM) for understanding the molecular pathogenesis of human diseases. Several international consortium and programs are under way to deliver mutations in every gene in mouse genome. The information from studying these GEM can be shared through international collaboration. However, there are many limitations in utility because not all human genes are knocked out in mouse and they are not yet phenotypically characterized by standardized ways which is required for sharing and evaluating data from GEM. The recent improvement in mouse genetics has now moved the bottleneck in mouse functional genomics from the production of GEM to the systematic mouse phenotype analysis of GEM. Enhanced, reproducible and comprehensive mouse phenotype analysis has thus emerged as a prerequisite for effectively engaging the phenotyping bottleneck. In this review, current information on systematic mouse phenotype analysis and an issue-oriented perspective will be provided.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.