The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.
Murad, Yasmin Z;Tarawneh, Bashar K;Ashteyat, Ahmed M
Computers and Concrete
/
제26권6호
/
pp.497-504
/
2020
Concrete can lose its alkalinity by concrete carbonation causing steel corrosion. Thus, the determination of the carbonation depth is necessary. An empirical model is proposed in this research to predict the carbonation depth of concrete using Gene expression programming (GEP). The GEP model was trained and validated using a large and reliable database collected from the literature. The model was developed using the six parameters that predominantly control the carbonation depth of concrete including carbon dioxide CO2 concentration, relative humidity, water-to-cement ratio, maximum aggregate size, aggregate to binder ratio and carbonation period. The model was statistically evaluated and then compared to the Jiang et al. model. A parametric study was finally performed to check the proposed GEP model's sensitivity to the selected input parameters.
In this paper, four formulas are proposed via gene expression programming (GEP)-based models and regression analysis (RA) to predict the flexural strength ($f_s$) values of mortars containing different mineral admixtures that are ground granulated blast-furnace slag (GGBFS), silica fume (SF) and fly ash (FA) at different ages. Three formulas obtained from the GEP-I, GEP-II and GEP-III models are constituted to predict the $f_s$ values from the age of specimen, water-binder ratio and compressive strength. Besides, one formula obtained from the RA is constituted to predict the $f_s$ values from the compressive strength. To achieve these formulas in the GEP and RA models, 972 data of the experimental studies presented with mortar mixtures were gathered from the literatures. 734 data of the experimental studies are divided without pre-planned for these formulas achieved from the training and testing sets of GEP and RA models. Beside, these formulas are validated with 238 data of experimental studies un-employed in training and testing sets. The $f_s$ results obtained from the training, testing and validation sets of these formulas are compared with the results obtained from the experimental studies and the formulas given in the literature for concrete. These comparisons show that the results of the formulas obtained from the GEP and RA models appear to well compatible with the experimental results and find to be very credible according to the results of other formulas.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제9권2호
/
pp.83-89
/
2005
In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.
This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.
Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
Computers and Concrete
/
제27권4호
/
pp.319-332
/
2021
The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.
In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are requentlyused lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.
Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.
The seismic design of embankment dams requires more comprehensive studies to understand the behaviour of dams. Deformations primarily control this behaviour occur during or after earthquake loading. Dam failures and incidents show that the impacts of deformations should be reviewed for existing and new embankment dams. Overtopping erosion failure can occur if crest deformations exceed the freeboard at the time of the deformations. Therefore, crest settlement is one of the most critical deformations. This study developed empirical formulas using Gene Expression Programming (GEP) based on 88 cases. In the analyses, dam height (Hd), alluvium thickness (Ha), the magnitude-acceleration-factor (MAF) values developed based on earthquake magnitude (Mw) and peak ground acceleration (PGA) within this study have been chosen as variables. Results show that GEP models developed in the paper are remarkably robust and accessible tools to predict earthquake-induced crest settlement of embankment dams and perform superior to the existing formulation. Also, dam engineering professionals can use them practically because the variables of prediction equations are easily accessible after the earthquake.
Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
Geomechanics and Engineering
/
제36권5호
/
pp.465-474
/
2024
Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.