References
- Ahmad, A., Khan, Q.Z. and Raza, A. (2020a), "Reliability analysis of strength models for CFRP-confined concrete cylinders". Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
- Ahmad, A., Plevris, V. and Khan, Q.Z. (2020b), "Prediction of properties of FRP-confined concrete cylinders based on artificial neural networks", Crystal., 10(9), 811. https://doi.org/10.3390/cryst10090811.
- Aire, C., Gettu, R. and Casas, J.R. (2001), "Study of the compressive behavior of concrete confined by fiber reinforced composites", Proceedings International Conference on Composites in Constructions, A.A. Balkema Publishers, Lisse, The Netherlands.
- Benzaid, R., Mesbah, H. and Chikh, N. (2010), "FRP-confined concrete cylinders: Axial compression experiments and strength model", J. Reinf. Plast. Compos., 29(16), 2469-8248. https://doi.org/10.1177/0731684409355199.
- Berthet, J.F., Ferrier, E. and Hamelin, P. (2005), "Compressive behavior of concrete externally confined by composite jackets, Part A, experimental study", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012.
- Bisby, L., Take, W.A. and Caspary, A. (2007), "Quantifying strain variation FRP confined using digital image correlation: proofof-concept and initial results", Asia-Pacific Conference on FRP in Structures.
- Bisby, L.A., Dent, A.J.S. and Green, M.F. (2005), "Comparison of confinement models for fiber-reinforced polymer-wrapped concrete", ACI Struct. J., 102(1), 62-72. https://doi.org/10.14359/13531.
- Bullo, S. (2003), "Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete", Proceedings International Conference on Composites in Construction, Cosenza, Italy.
- Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047.
- Cevik, A. (2011), "Modeling strength enhancement of FRP confined concrete cylinders using soft computing", Exp. Syst. Appl. 38(5), 5662-5673. https://doi.org/10.1016/j.eswa.2010.10.069.
- Cevik, A., Gogus, M.T., Guzelbey, I.H. and Filiz, H. (2010), "Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders", Ad. Eng. Softw., 41, 527-536. https://doi.org/10.1016/j.advengsoft.2009.10.015.
- Cui, C. and Sheikh, S.A. (2010), "Experimental study of normal-and high-strength concrete confined with fiber-reinforced polymers", J. Compos. Constr., 14(5), 553-561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116.
- De Lorenzis, L., Micelli, F. and La Tegola, A. (2002), "Influence of specimen size and resin type on the behavior of FRP-confined concrete cylinders", Proceedings 1 st International Conference on Advanced Polymer Composites for Structural Applications in Construction, Thomas Telford, London, UK.
- Demers, M. and Neale, K.W. (1994), "Strengthening of concrete columns with unidirectional composite sheets", Proceedings 4th International Conference on Short and Medium Span Bridges, Montreal, Canada.
- Dias da Silva, V. and Santos, J.M.C. (2001), "Strengthening of axially loaded concrete cylinders by surface composites", Proceedings International Conference on Composites in Constructions, Lisse, The Netherlands.
- Du, J., Ma, H., Sun, D. and Pan, P. (2022), "Data driven strength and strain enhancement model for FRP confined concrete using Bayesian optimization", Struct., 41, 1345-1358. https://doi.org/10.1016/j.istruc.2022.05.093.
- Evans, J., Kocman, M. and Kretschmer, T. (2008), "Hybrid FRP confined concrete columns", Honours, The School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Australia.
- Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129. https://doi.org/10.48550/arXiv.cs/0102027.
- Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Comput. Indus., 635-653. https://doi.org/10.1007/978-1-4471- 0123-9_54.
- Ferreira, C. (2006), Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd Edition, Revised and Extended Edition, Springer.
- Gandomi, A.H., Alavi, A.H. and Ryan, C. (2015), Handbook of Genetic Programming Applications, Springer.
- Gepsoft GeneXproTools 5 (2022), Data Modeling & Analysis Software, https://www.gepsoft.com.
- Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.
- Ilki, A., Kumbasar, N. and Koc, V. (2002), "Strength and deformability of low strength concrete confined by carbon fibre composite sheets", Proceedings 15th Engineering Mechanical Conference, Columbia University, New York.
- Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct. Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.
- Jalal, M. (2015), "Soft computing techniques for compressive strength prediction of concrete cylinders strengthened by CFRP composites", Sci. Eng. Compos. Mater., 22(1), 97-112. https://doi.org/10.1515/secm-2013-0240.
- Jalal, M. and Ramezanianpour, A.A. (2012), "Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks", Compos. Part B Eng., 43, 2990-3000. https://doi.org/10.1016/j.compositesb.2012.05.044.
- Jiang, T. and Teng, J.G. (2007), "Analysis-oriented models for FRP-confined concrete: A comparative assessment", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
- Keshtegar, B., Gholampour, A., Thai, D.K., Taylan, O. and Trung, N.T. (2021), "Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete", Compos. Struct., 262, 113644. https://doi.org/10.1016/j.compstruct.2021.113644.
- Kono, S., Inazuni, M. and Kaku, T. (1998), "Evaluation of confining effects of CFRP sheets on reinforced concrete members", Proceedings 2nd International Conference on Composites in Infrastructures.
- Lam, L. and Teng, J.G. (2002), "Strength models for fiber-reinforced plastic-confined concrete", ASCE J. Struct. Eng., 128(5), 612-623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612).
- Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1177/0731684403035429.
- Lam, L. and Teng, J.G. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
- Lam, L., Teng, J.G., Cheung, C.H. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete Compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
- Liang, M., Wu, Z.M., Ueda, T., Zheng, J.J. and Akogbe1, R. (2012), "Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes", J. Reinf. Plast. Compos., 31(6), 389-403. https://doi.org/10.1177/0731684412439347.
- Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005.
- Lin, H.J. and Chen, C.T. (2001), "Strength of concrete cylinder confined by composite materials", J. Reinf. Plast. Compos., 20(18), 1577-600. https://doi.org/10.1177/2F073168401772679066.
- Lin, S., Zhao, Y.G., Li., J. and Lu., Z.H. (2020), "Confining stress path-based compressive strength model of axially loaded FRP-confined columns", J. Compos. Constr., 25(1), 1-14. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001090.
- Mansouri, I., Kisi, O., Sadeghian, P., Lee, C.H. and Hu, J.W. (2017), "Prediction of ultimate strain and strength of FRP-confined concrete cylinders using soft computing methods", Appl. Sci., 7(8), 751. https://doi.org/10.3390/app7080751.
- Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2006), "Axial load behavior of large scale columns confined with fiber-reinforced polymer composites", ACI Struct. J., 102(2), 258-267. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123).
- Micelli, F., Myers, J.J. and Murthy, S. (2001), "Effect of environmental cycles on concrete cylinders confined with FRP", Proceedings International Conference on Composites in Constructions, A.A. Balkema Publishers, Lisse, The Netherlands.
- Mirmiran, A. (1996), "Analytical and experimental investigation of reinforced concrete columns encased in fiberglass tubular jackets and use of fiber jacket for pile splicing", Contract No. B-9135, Florida Department of Transport, Tallahassee, FL.
- Miyauchi, K., Inoue, S., Kuroda, T. and Kobayashi, A. (1999), "Strengthening effects with carbon fiber sheet for concrete column", Proc. JPN Concrete Inst., 21(3), 1453-1458.
- Modarelli, R., Micelli, F. and Manni, O. (2005), "FRP-confinement of hollow concrete cylinders and prisms", Proceedings 7th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-7), NO. SP-230, American Concrete Institute, Farmington, MI, 1029-1046.
- Naderpoura, H., Nagaib, K., Fakhariana, P. and Haji, M. (2019), "Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods", Compos. Struct., 215, 69-84. https://doi.org/10.1016/j.compstruct.2019.02.048.
- Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks". Comput. Concrete, 8, 597-616. https://doi.org/10.12989/cac.2011.8.5.597.
- Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model", Compos. Part B: Eng., 55, 607-634. https://doi.org/10.1016/j.compositesb. 2013.07.025.
- Pessiki, S., Harries, K.A., Kestner, J., Sause, R. and Ricles, J.M. (2001), "The axial behavior of concrete confined with fiber reinforced composite jackets", ASCE J. Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237).
- Picher, F., Rochette, P. and Labossiere, P. (1996), "Confinement of concrete cylinders with CFRP", Proceedings 1st International Conference on Composites in Infrastructure, Tucson, Arizona.
- Pour, A.F., Ozbakkaloglu, T. and Vincent, T. (2018), "Simplified design-oriented axial stress strain model for FRP-confined normal- and high-strength concrete", Eng. Struct., 175, 501-516. https://doi.org/10.1016/j.engstruct.2018.07.099.
- Purba, B.K. and Mufti, A.A. (1999), "Investigation of the behavior of circular concrete columns reinforced with carbon fiber reinforced polymer (CFRP) jackets", Can. J. Civil Eng., 26(5), 590-596. https://doi.org/10.1139/cjce-26-5-590.
- Rochette, P. and Labossiere, P. (2000), "Axial testing of rectangular column models confined with composites", J. Compos. Constr., 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129).
- Rousakis, T. and Tepfers, R. (2004), "Behavior of concrete confined by high E-modulus carbon FRP sheets, subjected to monotonic and cyclic axial compressive load", Nordic Concrete Res. J., 31(1), 73-82. https://www.researchgate.net/publication/236343365.
- Saenz, N. and Pantelides, C.P. (2006), "Short and medium term durability evaluation of FRP-confined circular concrete", ASCE J. Compos. Constr., 10(3), 244-253. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(244).
- Saiidi, M.S., Sureshkumar, K. and Pulido, C. (2005), "Simple carbon-fiber-reinforced-plasticconfined concrete model for moment-curvature analysis", ASCE J. Compos. Constr., 9(1), 101-104. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(101).
- Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", ASCE J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).
- Shahmansouri, A.A., Bengar, H.A. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
- Shehata, I.A.E.M., Carneiro, L.A.V. and Shehata, L.C.D. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35, 50-58. https://doi.org/10.1007/BF02482090.
- Smith, S.T., Kim, S.J. and Zhang, H. (2010), "Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders", J. Compos. Constr., 14(5), 573-582. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000119.
- Song, X., Gu, X., Li, Y., Chen, T. and Zhang, W. (2013), "Mechanical behavior of FRP-strengthened concrete columns subjected to concentric and eccentric compression loading", J. Compos. Constr., 17(3), 336-346. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000351.
- Tamuzs, V., Tepfers, R. and Sparnins, E. (2006), "Behavior of concrete cylinders confined by carbon composite 2.prediction of strength". Mech. Compos. Mater., 42(2), 109-118. https://doi.org/10.1007/s11029-006-0022-7.
- Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Struct., 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.
- Theriault, M. and Neale, K.W. (2000), "Design equations for axially loaded reinforced concrete columns strengthened with FRP wraps", Can. J. Civil Eng., 27(5), 1011-1020. https://doi.org/10.1139/cjce-27-5-1011.
- Toutanji, H. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", ACI Mater. J., 96(3), 397-404.
- Toutanji, H. and Deng, Y. (2001), "Performance of concrete columns strengthened with fiber reinforced polymer composite sheets", Adv. Compos. Mater., 10(2-3), 159-168. https://doi.org/10.1163/156855101753396636.
- Valdmanis, V., De Lorenzis, L., Rousakis, T. and Tepfers, R. (2007), "Behaviour and capacity of CFRP-confined concrete cylinders subjected to monotonic and cyclic axial compressive load", Struct. Concrete, 8(4), 187-190. https://doi.org/10.1680/stco.2007.8.4.187
- Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete", Constr. Build. Mater., 47, 814-826. http://doi.org/10.1016/j.conbuildmat.2013.05.085.
- Wang, L.M. and Wu, Y.F. (2008), "Effect of corner radius on the performance of CFRP- confined square concrete columns: Test", Eng. Struct., 30(2), 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016.
- Wang, P. and Cheong, K.K. (2001), "RC columns strengthened by FRP under uniaxial compression", Proceedings International Conference on FRP Composites in Civil Engineering, Oxford, UK.
- Wang, Z., Wanga, D., Smith, S.T. and Lu, D. (2012), "Experimental testing and analytical modeling of CFRP-confined large circular RC columns subjected to cyclic axial compression", Eng. Struct., 40, 64-74. https://doi.org/10.1016/j.engstruct.2012.01.004.
- Watanable, K., Nakamura, H., Honda, T., Toyoshima, M., Iso, M., Fujimaki, T., Kaneto, M. and Shirai, N. (1997), "Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression", Proceedings 3rd International Symposium on Non-Metallic FRP Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, Japan.
- Wei, Y., Zhang, X., Wu, G. and Zhou, Y. (2018), "Behaviour of concrete confined by both steel spirals and fiber-reinforced polymer under axial load", Compos. Struct., 192, 577-591. https://doi.org/10.1016/j.compstruct.2018.03.041.
- Wu, Y.F. and Jiang, J.F. (2013), "Effective strain of FRP for confined circular concrete columns", Compos. Struct., 95, 479-491. https://doi.org/10.1016/j.compstruct.2012.08.021.
- Wu, Y.F. and Wang, L. (2009), "Unified strength model for square and circular concrete columns confined by external jacket", ASCE J. Struct. Eng., 135(3), 253-261. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253.
- Wu, Y.F. and Zhou, Y. (2010), "Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP", ASCE J. Compos. Constr., 14(2), 175-184. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000062.
- Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).
- Xiao, Y. and Wu, H. (2003), "Compressive behavior of concrete confined by various types of FRP composites jackets", J. Reinf. Plast. Compos., 22(13), 1187-11202. https://doi.org/10.1177/0731684403035430.
- Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. Part B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020.
- Zeng, J.J., Guo, Y.C., Gao, W.Y. and Chen, W.P. (2018), "Stressstrain behavior of concrete in circular concrete columns partially wrapped with FRP strips", Compos. Struct., 200, 810-828. https://doi.org/10.1016/j.compstruct.2018.05.001.
- Zhou, Y., Zheng, Y., Sui, L., Xing, F., Hu, J. and Li, P. (2019), "Behavior and modeling of FRP-confined ultra-lightweight cement composites under monotonic axial compression", Compos. Part B: Eng., 162, 289-302. https://doi.org/10.1016/j.compositesb.2018.10.087.