• Title/Summary/Keyword: gene discovery

Search Result 287, Processing Time 0.022 seconds

The Principle and Trends of CRISPR/Cas Diagnosis (CRISPR/Cas 진단의 원리와 현황)

  • Park, Jeewoong;Kang, Bong Keun;Shin, Hwa Hui;Shin, Jun Geun
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.125-142
    • /
    • 2021
  • The POCT (point-of-care test) sensing that has been a fast-developing field is expected to be a next generation technology in health care. The POCT sensors for the detection of proteins, small molecules and especially nucleic acids have lately attracted considerable attention. According to the World Health Organization (WHO), the POCT methods are required to follow the ASSURED guidelines (Affordable, Sensitive, Specific, User- friendly, Robust and rapid, Equipment-free, Deliverable to all people who need the test). Recently, several CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based diagnostic techniques using the sensitive gene recognition function of CRISPR have been reported. CRISPR/Cas (Cas, CRISPR associated protein) systems based detection technology is the most innovative gene analysis technology that is following the ASSURED guidelines. It is being re-emerged as a powerful diagnostic tool that can detect nucleic acids due to its characteristics that enable rapid, sensitive and specific analyses of nucleic acid. The first CRISPR-based diagnosis begins with the discovery of the additional function of Cas13a. The enzymatic cleavage occurs when the conjugate of Cas protein and CRISPR RNA (crRNA) detect a specific complementary sequence of the target sequence. Enzymatic cleavage occurs on not only the target sequence, but also all surrounding non-target single-stranded RNAs. This discovery was immediately utilized as a biosensor, and numerous sensor studies using CRISPR have been reported since then. In this review, the concept of CRISPR, the characteristics of the Cas protein required for CRISPR diagnosis, the current research trends of CRISPR diagnostic technology, and some aspects to be improved in the future are covered.

Prospective evaluation of the clinical utility of whole-exome sequencing using buccal swabbing for undiagnosed rare diseases

  • Chong Kun Cheon;Yong Beom Shin;Soo-Yeon Kim;Go Hun Seo;Hane Lee;Changwon Keum;Seung Hwan Oh
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.76-84
    • /
    • 2022
  • Purpose: Whole-exome sequencing (WES) has been a useful tool for novel gene discovery of various disease categories, further increasing the diagnostic yield. This study aimed to investigate the clinical utility of WES prospectively in undiagnosed genetic diseases. Materials and Methods: WES tests were performed on 110 patients (age range, 0-28 years) with suspected rare genetic diseases. WES tests were performed at a single reference laboratory and the variants reported were reviewed by clinical geneticists, pediatricians, neurologists, and laboratory physicians. Results: The patients' symptoms varied with abnormalities in the head or neck, including facial dysmorphism, being the most common, identified in 85.4% of patients, followed by abnormalities in the nervous system (83.6%). The average number of systems manifesting phenotypic abnormalities per patient was 3.9±1.7. The age at presentation was 2.1±2.7 years old (range, 0-15 years), and the age at WES testing was 6.7±5.3 years (range, 0-28 years). In total, WES test reported 100 pathogenic/likely pathogenic variants or variants of uncertain significance for 79 out of 110 probands (71.8%). Of the 79 patients with positive or inconclusive calls, 55 (50.0%) patients were determined to have good genotype-phenotype correlations after careful review. Further clinical reassessment and family member testing determined 45 (40.9%) patients to have been identified with a molecular diagnosis. Conclusion: This study showed a 40.9% diagnostic yield for WES test for a heterogeneous patient cohort with suspected rare genetic diseases. WES could be the feasible genetic test modality to overcome the diversity and complexity of rare disease diagnostics.

Alternative Splicing of Breast Cancer Associated Gene BRCA1 from Breast Cancer Cell Line

  • Lixia, Miao;Zhijian, Cao;Chao, Shen;Chaojiang, Gu;Congyi, Zheng
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Breast cancer is the most common malignancy among women, and mutations in the BRCA1 gene produce increased susceptibility to these malignancies in certain families. In this study, the forward 1-13 exons of breast cancer associated gene BRCA1 were cloned from breast cancer cell line ZR-75-30 by RT-PCR method. Sequence analysis showed that nine BRCA1 splice forms were isolated and characterized, compared with wild-type BRCA1 gene, five splice forms of which were novel. These splice isoforms were produced from the molecular mechanism of 5' and 3' alternative splicing. All these splice forms deleting exon 11b and the locations of alternative splicing were focused on two parts:one was exons 2 and 3, and the other was exons 9 and 10. These splice forms accorded with GT-AG rule. Most these BRCA1 splice variants still kept the original reading frame. Western blot analysis indicated that some BRCA1 splice variants were expressed in ZR-75-30 cell line at the protein level. In addition, we confirmed the presence of these new transcripts of BRCA1 gene in MDA-MB-435S, K562, Hela, HLA, HIC, H9, Jurkat and human fetus samples by RT-PCR analysis. These results suggested that breast cancer associated gene BRCA1 may have unexpectedly a large number of splice variants. We hypothesized that alternative splicing of BRCA1 possibly plays a major role in the tumorigenesis of breast and/or ovarian cancer. Thus, the identification of cancer-specific splice forms will provide a novel source for the discovery of diagnostic or prognostic biomarkers and tumor antigens suitable as targets for therapeutic intervention.

Major histocompatibility complex genes exhibit a potential immunological role in mixed Eimeria-infected broiler cecum analyzed using RNA sequencing

  • Minjun Kim;Thisarani Kalhari Ediriweera;Eunjin Cho;Yoonji Chung;Prabuddha Manjula;Myunghwan Yu;John Kariuki Macharia;Seonju Nam;Jun Heon Lee
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.993-1000
    • /
    • 2024
  • Objective: This study was conducted to investigate the differential expression of the major histocompatibility complex (MHC) gene region in Eimeria-infected broiler. Methods: We profiled gene expression of Eimeria-infected and uninfected ceca of broilers sampled at 4, 7, and 21 days post-infection (dpi) using RNA sequencing. Differentially expressed genes (DEGs) between two sample groups were identified at each time point. DEGs located on chicken chromosome 16 were used for further analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was conducted for the functional annotation of DEGs. Results: Fourteen significant (false discovery rate <0.1) DEGs were identified at 4 and 7 dpi and categorized into three groups: MHC-Y class I genes, MHC-B region genes, and non-MHC genes. In Eimeria-infected broilers, MHC-Y class I genes were upregulated at 4 dpi but downregulated at 7 dpi. This result implies that MHC-Y class I genes initially activated an immune response, which was then suppressed by Eimeria. Of the MHC-B region genes, the DMB1 gene was upregulated, and TAP-related genes significantly implemented antigen processing for MHC class I at 4 dpi, which was supported by KEGG pathway analysis. Conclusion: This study is the first to investigate MHC gene responses to coccidia infection in chickens using RNA sequencing. MHC-B and MHC-Y genes showed their immune responses in reaction to Eimeria infection. These findings are valuable for understanding chicken MHC gene function.

Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.648-657
    • /
    • 2008
  • In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Generation of Expressed Sequence Tags for Immune Gene Discovery and Marker Development in the Sea Squirt, Halocynthia roretzi

  • Kim, Young-Ok;Cho, Hyun-Kook;Park, Eun-Mi;Nam, Bo-Hye;Hur, Young-Baek;Lee, Sang-Jun;Cheong, Jae-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1510-1517
    • /
    • 2008
  • Expresssed sequence tag (EST) analysis was developed from three cDNA libraries constructed from cells of the digestive tract, gonad, and liver of sea squirt. Randomly selected cDNA clones were partially sequenced to generate a total of 922 ESTs, in which 687 unique ESTs were identified respectively. Results of BLASTX search showed that 612 ESTs (89%) have homology to genes of known function whereas 75 ESTs (11%) were unidentified or novel. Based on the major function of their encoded proteins, the identified clones were classified into ten broad categories. We also identified several kinds of immune-related genes as identifying novel genes. Sequence analysis of ESTs revealed the presence of microsatellite-containing genes that may be valuable for further gene mapping studies. The accumulation of a large number of identified cDNA clones is invaluable for the study of sea squirt genetics and developmental biology. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Characterization of Single Nucleotide Polymorphisms in 55 Disease-Associated Genes in a Korean Population

  • Lee, Seung-Ku;Kim, Hyoun-Geun;Kang, Jason-J.;Oh, Won-Il;Oh, Berm-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2007
  • Most common diseases are caused by multiple genetic and environmental factors. Among the genetic factors, single nucleotide polymorphisms (SNPs) are common DNA sequence variations in individuals and can serve as important genetic markers. Recently, investigations of gene-based and whole genome-based SNPs have been applied to association studies for marker discovery. However, SNPs are so population-specific that the association needs to be verified. Fifty-five genes and 384 SNPs were selected based on association with disease. Genotypes of 337 SNPs in candidate genes were determined using Illumina Sentrix Array Matrix (SAM) chips by an allele-specific extension method in 364 unrelated Korean individuals. Allelic frequencies of SNPs were compared with those of other populations obtained from the International HapMap database. Minor allele frequencies, linkage disequilibrium blocks, tagSNPs, and haplotypes of functional candidate SNPs in 55 genetic disease-associated genes were provided. Our data may provide useful information for the selection of genetic markers for gene-based genetic disease-association studies of the Korean population.

Genome-Wide Association Study Identifies Candidate Loci Associated with Platelet Count in Koreans

  • Oh, Ji Hee;Kim, Yun Kyoung;Moon, Sanghoon;Kim, Young Jin;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.225-230
    • /
    • 2014
  • Platelets are derived from the fragments that are formed from the cytoplasm of bone marrow megakaryocytes-small irregularly shaped anuclear cells. Platelets respond to vascular damage, contracts blood vessels, and attaches to the damaged region, thereby stopping bleeding, together with the action of blood coagulation factors. Platelet activation is known to affect genes associated with vascular risk factors, as well as with arteriosclerosis and myocardial infarction. Here, we performed a genome-wide association study with 352,228 single-nucleotide polymorphisms typed in 8,842 subjects of the Korea Association Resource (KARE) project and replicated the results in 7,861 subjects from an independent population. We identified genetic associations between platelet count and common variants nearby chromosome 4p16.1 ($p=1.46{\times}10^{10}$, in the KIAA0232 gene), 6p21 ($p=1.36{\times}10^{-7}$, in the BAK1 gene), and 12q24.12 ($p=1.11{\times}10^{-15}$, in the SH2B3 gene). Our results illustrate the value of large-scale discovery and a focus for several novel research avenues.

A Case of Idiopathic Renal Hypouricemia with SLC22A12 Gene Mutation Showing General Weakness and Incidental Renal Stone

  • Joung, Jin Woon;Song, Young Wha;Kim, Jong Dae;Cheon, Eun Jung
    • Childhood Kidney Diseases
    • /
    • v.25 no.1
    • /
    • pp.44-48
    • /
    • 2021
  • Idiopathic renal hypouricemia (iRHUC) is a rare hereditary disease caused by a defect in urate handling of renal tubules. Type 1 renal hypouricemia (RHUC1) is diagnosed with confirmation of a mutation in SLC22A12 gene which encodes a renal urate-anion exchanger (URAT1). The majority of iRHUC patients are asymptomatic, especially during childhood, and thus many cases go undiagnosed or they are diagnosed late in older age with complications of hematuria, renal stones, or acute kidney injury (AKI). We report a case of a 7-year-old boy with subtle symptoms such as general weakness and dizziness and revealed hypouricemia and incidental nephrolithiasis. Homozygous mutations were detected in the SLC22A12 (c.774G>A) by molecular analysis. The present case suggests that fractional excretion of uric acid (FEUA) screening could be better followed by the coincidental discovery of hypouricemia, to prevent conflicting complications of iRHUC, even with normal urine uric acid to creatinine ratio (UUA/UCr), and sequential genetic analysis if needed.