• Title/Summary/Keyword: gene discovery

Search Result 286, Processing Time 0.024 seconds

Toxicogenomics approaches in Toxicological Pathology

  • Shirai, Tomoyuki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.116-116
    • /
    • 2002
  • It is believed that cell and/or tissue toxicity is resulted from alterations in expression of many genes in response to environmental stresses or toxicants. New technology, such as DNA microarray analysis, can measure the expression of thousands of genes at a time providing the potential to accelerate discovery of toxicant pathways and specific gene targets.(omitted)

  • PDF

Applications of CRISPR technologies to the development of gene and cell therapy

  • Chul-Sung Park;Omer Habib;Younsu Lee;Junho K. Hur
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.2-11
    • /
    • 2024
  • Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-to-thymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases.

Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

  • Furlong, Michael;Seong, Jae Young
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.

Identification and Characterization of Bombyx mori LDH Gene through Bioinformatics Approaches

  • Zhu, Minfeng;Chen, Keping;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2007
  • Lactate dehydrogenase (LDH) is a ubiquitous enzyme that plays a significant role in the clinical diagnosis of pathologic processes. Discovery of the LDH (BmLDH) gene in B. mori may shed light on its role in the biology of Lepidoptera species, and afford further understanding of the function of the enzyme. In this study, we used the bioinformatics tools to identify LDH gene in B. mori. Sequence analysis showed that BmLDH cDNA contains a 996 bp open reading frame, encoding 331 AA proteins, with seven introns. Compared with hHLDH (human heart LDH), BmLDH contained the same key active sites. Domain search and protein fold recognition analyses provide compelling evidences that the deduced protein is a LDH. Using the computer program MEGA3, we conducted a search for homologs of BmLDH among many eukaryotic species and confirmed that the BmLDH was conserved in all organisms investigated. This gene has been registered in GenBank under the accession number EU000385.

A Primer for Disease Gene Prioritization Using Next-Generation Sequencing Data

  • Wang, Shuoguo;Xing, Jinchuan
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.191-199
    • /
    • 2013
  • High-throughput next-generation sequencing (NGS) technology produces a tremendous amount of raw sequence data. The challenges for researchers are to process the raw data, to map the sequences to genome, to discover variants that are different from the reference genome, and to prioritize/rank the variants for the question of interest. The recent development of many computational algorithms and programs has vastly improved the ability to translate sequence data into valuable information for disease gene identification. However, the NGS data analysis is complex and could be overwhelming for researchers who are not familiar with the process. Here, we outline the analysis pipeline and describe some of the most commonly used principles and tools for analyzing NGS data for disease gene identification.

Inbreeding Coefficients in Two Isolated Mongolian Populations - GENDISCAN Study

  • Sung, Joo-Hon;Lee, Mi-Kyeong;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.14-17
    • /
    • 2008
  • GENDISCAN study (Gene Discovery for Complex traits in Asian population of Northeast area) was designed to incorporate methodologies which enhance the power to identify genetic variations underlying complex disorders. Use of population isolates as the target population is a unique feather of this study. However, population isolates may have hidden inbreeding structures which can affect the validity of the study. To understand how this issue may affect results of GENDISCAN, we estimated inbreeding coefficients in two study populations in Mongolia. We analyzed the status of Hardy-Weinberg Equilibrium (HWE), polymorphism information contents (PIC), heterozygosity, allelic diversity, and inbreeding coefficients, using 317 and 1,044 STR (short tandem repeat) markers in Orkhontuul and Dashbalbar populations. HWE assumptions were generally met in most markers (88.6% and 94.2% respectively), and single marker PIC ranged between 0.2 and 0.9. Inbreeding coefficients were estimated to be 0.0023 and 0.0021, which are small enough to assure that conventional genetic analysis would work without any specific modification. We concluded that the population isolates used in GENDISCAN study would not present significant inflation of type I errors from inbreeding effects in its gene discovery analysis.

Gene Duplications Revealed during the Process of SNP Discovery in Soybean[Glycine max(L.) Merr.]

  • Cai, Chun Mei;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2007
  • Genome duplication(i.e. polyploidy) is a common phenomenon in the evolution of plants. The objective of this study was to achieve a comprehensive understanding of genome duplication for SNP discovery by Thymine/Adenine(TA) cloning for confirmation. Primer pairs were designed from 793 EST contigs expressed in the roots of a supernodulating soybean mutant and screened between 'Pureunkong' and 'Jinpumkong 2' by direct sequencing. Almost 27% of the primer sets were failed to obtain sequence data due to multiple bands on agarose gel or poor quality sequence data from a single band. TA cloning was able to identify duplicate genes and the paralogous sequences were coincident with the nonspecific peaks in direct sequencing. Our study confirmed that heterogeneous products by the co-amplification of a gene family member were the main cause of obtaining multiple bands or poor quality sequence data in direct sequencing. Counts of amplified bands on agarose gel and peaks of sequencing trace suggested that almost 27% of nonrepetitive soybean sequences were present in as many as four copies with an average of 2.33 duplications per segment. Copy numbers would be underestimated because of the presence of long intron between primer binding sites or mutation on priming site. Also, the copy numbers were not accurately estimated due to deletion or tandem duplication in the entire soybean genome.

  • PDF

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.