• Title/Summary/Keyword: gene cloning and expression

Search Result 767, Processing Time 0.035 seconds

Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus) (넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구)

  • Jeong, Tae Hyug;Youn, Joo Yeon;Ji, Keunho;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K) plays a central role in cell signaling and leads to cell proliferation, survival, motility, exocytosis, and cytoskeletal rearrangements, as well as specialized cell responses, superoxide production, and cardiac myocyte growth. PI3K is divided into three classes; type I PI3K is preferentially expressed in leukocytes and activated by ${\beta}{\gamma}$ subunits of heterotrimeric G-proteins. In this study, the cDNAs encoding the $PI3K{\gamma}$ gene were isolated from a brain cDNA library constructed using the flounder (Paralichthys olivaceus). The sequence of the isolated $PI3K{\gamma}$ was 1341 bp, encoding 447 amino acids. The nucleotide sequence of the $PI3K{\gamma}$ gene was analyzed with that of other species, including Oreochromis niloticus and Danio rerio, and it turned out to be well conserved during evolution. The $PI3K{\gamma}$ gene was subcloned into the expression vector pET-44a(+), and expressed in the E. coli BL21 (DE3) codon plus cell. The resulting protein was expressed as a fusion protein of approximately 49 kDa containing a C-terminal six-histidine extension that was derived from the expression vector. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to $PI3K{\gamma}$. The binding of wortmannin to $PI3K{\gamma}$, as detected by anti-wortmannin antisera, closely followed the inhibition of the kinase activities. The results obtained from this study will provide a wider base of knowledge on the primary structure and characterization of the $PI3K{\gamma}$ at the molecular level.

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud (들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석)

  • Kang, So-Mi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Kwon, Yong-Ik;Ko, Suk-Min;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.450-456
    • /
    • 2016
  • Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

Isolation and Characterization of Zymomonas mobilis DNA Fragments Showing Promoter Activity in Escherichia coli (Escherichia coli에서 Promoter 활성을 보이는 Zymomonas mobilis DNA 조각의 분리와 분석)

  • Kim, Eun-Joon;Yoon, Ki-Hong;M.Y. Pack
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.600-605
    • /
    • 1989
  • For the purpose of isolation of the Zymomonas mobilis DNA fragments showing promoter activity in Escherichia coli, a promoter screening vector, PCMT215 was constructed by transferring a promoterless chloramphenicol acetyltransferase (CAT) gene of pYEJ001 into pMT21 which contains $\beta$-lactamase gene and multiple cloning sites. A library of Z, mobilis Sau3AI DNA fragments was constructed in E. coli using the newly constructed pCMT215. Fourteen clones showing resistance to chloramphenicol ranging in concentration from 30 to 750 $\mu$g/$m\ell$ were selected. From five clones of them, the Z. mobilis DNA fragments expressing CAT gene of the recombinant plasmids were sequenced and then sites of transcriptional initiation were identified. The nucleotide sequences of the cloned DNA shared AT rich regions, poly A's or T's stretches and palindromic regions. The positions of transcriptional initiation for CAT gene occurred at more than one site spaced over by 4 to 190 base pairs on the cloned fragments in E. coli.

  • PDF

Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70 (수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현)

  • Min, Byung Hwa;Hur, Jun Wook;Park, Hyung Jun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.639-647
    • /
    • 2018
  • A new heat shock protein 70 was identified in red-spotted grouper (Epinephelus akaara) based on an expression analysis. The cDNA of red-spotted grouper Hsp70 (designated RgHsp70) was cloned by the rapid amplification of cDNA ends (RACE) techniques. The full-length of RgHsp70 cDNA was 2,152 bp, consisting of a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 274 bp, and an open reading frame (ORF) of 1,773 bp that encode a polypeptide of 590 amino acids with a theoretical molecular weight of 64.9 kDa and an estimated isoelectric point of 5.2. Multiple alignment and phylogenetic analyses revealed that the RgHsp70 gene shares a high similarity with other Hsp70 fish genes. RgHsp70 contained all three classical Hsp70 family signatures. The results indicated the RgHsp70 is a member of the heat shock protein 70 family. RgHsp70 mRNA was predominately expressed in the liver, with reduced expression noted in the head-kidney tissues. The expression analysis of different water temperatures (21, 18, 15 and $12^{\circ}C$) for sampled livers revealed that expression gradually increased at $12^{\circ}C$ compared to $21^{\circ}C$. In this study, the effects of water temperature lowering on the physiological conditions were investigated, and the results revealed that novel RgHsp70 may be an important molecule involved in stress responses.

Cloning and Expression of an $\alpha$-Amylase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus circulans $\alpha$-amylase 유전자의 Basillus subtilis와 Bacillus megaterium에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.203-208
    • /
    • 2000
  • A Baczllus circdans KCTC3004 $\alpha$-amylase gene contained in a recombinant plasmid pAL850 was transferred into a new shuttle vector plasmid pALSIlI by ligating linearlzed DNAs of pUC19 and pUB110. B. subtilis RM125 and B. megatenurn ATCC14945 transfonned with pALS111 produced the $\alpha$-amylase substantially Most of the enzyme was produced during the exponential growth period. The maxiinurn activities of the $\alpha$-amylase produced by the Bucillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125(pALS111) enzyme showed the actlvicy 95 times higher than that of the gene donor cells, followed by the B, nzegaterium ATCC14945(pALSlll) enzyme with activity 34 limes higher than that of the gene donor cells. While E coli secreted about 10% of the produced enzyme, B. subtilis excreted the enzyme inlo the medium wholly and B. megaterirun about 98% ofthe total product. The plasmid pALSI11 was quite stable inB. nzegaterium (92%), inoderately stable in B. subtilis (76%), but was unstable in E. coli (38%). The SDS-PAGE and zymogram of this enzyme produced in E. coli(pALS111), B. subtilis( pALS111) or B. megateril~m (pALS111) indicated a molecular weight of 55,000. The enzymes overproduced in three different host cells hydrolyzed starch to produce mainly maltoaiose and mallooligosaccharides.

  • PDF

A Functional Analysis of OsCPK11, a Calcium-dependent Protein Kinase (CDPK) Gene in Rice (벼의 칼슘-의존성 단백질 카이네즈 유전자인 OsCPK11의 기능적 분석)

  • Lee, Su-Hee;Lee, Jeong-Eun;Day, Philip;Gilroy, Simon;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1233-1244
    • /
    • 2017
  • CDPKs have pivotal roles in plant $Ca^{2+}$-mediated transduction signaling. A total of 29 CDPK genes have been identified in rice (Oryza sativa L.), but their key functions have not been completely noted. This study focused on the OsCPK11 gene, which has not been studied, to determine its functional characteristics. A study of tissue-specific expressions revealed that the OsCPK11 gene is expressed in young leaves, mature leaves and flowers of rice. An expression of the gene was also confirmed in gibberellin-treated aleurone layers of rice. Regarding the phenotypic characteristics of Tos17-inserted OsCPK11 mutants, the heights of the mutants were not distinguishable from the heights of wild type plants, but the number of caryopses and the caryopses' weights were significantly statistically different. In addition, many grains of the mutants had white belly materials in their endosperm. The cDNA of the OsCPK11 was cloned, and an OsCPK11 protein of about 60.5 kD was obtained by using a GST affinity chromatography and an SDS-PAGE. An analysis of the amino-acid sequence of the protein indicated that the OsCPK11 protein has the structural characteristics of typical CDPKs. The results provided useful information about the functions of the OsCPK11 gene and further noted the roles CDPKs have in $Ca^{2+}$-mediated signaling in plants.

Cloning and Transcription Analysis of Sporulation Gene (spo5) in Schizosaccharomyces pombe (Schizosaccharomyces bombe 포자형성 유전자(spo5)의 Cloning 및 전사조절)

  • 김동주
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.112-118
    • /
    • 2002
  • Sporulation in the fission yeast Schizosaccharomyces pombe has been regarded as an important model of cellular development and differentiation. S. pombe cells proliferate by mitosis and binary fission on growth medium. Deprivation of nutrients especially nitrogen sources, causes the cessation of mitosis and initiates sexual reproduction by matting between two sexually compatible cell types. Meiosis is then followed in a diploid cell in the absence of nitrogen source. DNA fragment complemented with the mutations of sporulation gene was isolated from the S. pombe gene library constructed in the vector, pDB 248' and designated as pDB(spo5)1. We futher analyzed six recombinant plasmids, pDB(spo5)2, pDB(spo5)3, pDB(spo5)4, pDB(spo5)5, pDB (spo5)6, pDB(spo5)7 and found each of these plasmids is able to rescue the spo5-2, spo5-3, spo5-4, spo5-5, spo5-6, spo5-7 mutations, respectively. Mapping of the integrated plasmid into the homologous site of the S. pombe chromosomes demonstrated that pDB(spo5)1, and pDB(spu5)Rl contained the spo5 gene. Transcripts of spo5 gene were analyzed by Northern hybridization. Two transcripts of 3.2 kb and 2.5kb were detected with 5kb Hind Ⅲ fragment containing a part of the spo5 gene as a probe. The small mRNA(2.5kb) appeared only when a wild-type strain was cultured in the absence of nitrogen source in which condition the large mRNA (3.2kb) was produced constitutively. Appearance of a 2.5kb spo5-mRNA depends upon the function of the meil, mei2 and mei3 genes.

Overproduction and High Level Secretion of Glucose Oxidase in Saccharomyces cerevisiae (Glucose Oxidase의 Saccharomyces cerevisiae에서의 대량생산 및 고효율 분비)

  • 홍성용;최희경;이영호;백운화;정준기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The overproduction and high level secretion of Glucose Oxidase (GOD) from A. niger in S. cerevisiae was carried out by cloning GOD gene. For this purpose, using two different strong promoters (ADH1 promoter, GAL10 promoter) and signal sequences (${alpha}$-MF signal sequence of S. cerevisiae and ${alpha}$-amylase signal sequence of A. oryzae) and GAL7- and GOD terminator, four expression vectors were constructed. All the expression vectors were transformed in S. cerevisiae 2805 using auxotroph method. By the flask culture, transformants of pGAL expression vector series containing GAL 10 promotor showed much higher GOD productivity than transformants of pADH expression vector series containing ADH1 promoter Transformants of pGALGO2 containing GAL10 promotor and ${alpha}$-amylase signal sequence has shown the best productivity of GOD ($GOD_{total}$: 10.3 unit/mL, $GOD_{ex}$: 8.7 unit/mL) at 115 hr. This value was three fold higher than that of pGALGO1 containing GAL 10 promotor and ${alpha}$-MF signal sequence, even if the same promotor was involved. Through the ${alpha}$-amylase signal sequence of A. oryzae, GOD was secreted much more than the case of ${alpha}$-MF signal sequence from S. cerevisiae. These results suggest that signal sequence may play a important roles in not only the secretion but also the overproduction of foreign protein. Secretion rate of GOD in pGALGO1 and pGALGO2 was 89% and 84%, respectively, Because of the overglycosylation in S. cerevisiae the molecular weight of recombinant GOD in S. cerevisiae was much larger (250 kDa) than that of nature GOD in A. niger (170 kDa).

  • PDF

Gene Cloning and Characterization of a Cold-Adapted Esterase from Acinetobacter venetianus V28

  • Kim, Young-Ok;Heo, Yu Li;Kim, Hyung-Kwoun;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Dong-Gyun;Kim, Woo-Jin;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1245-1252
    • /
    • 2012
  • Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at $18^{\circ}C$. The maximal activity of the purified enzyme was observed at a temperature of $40^{\circ}C$ and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at $5^{\circ}C$ with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetallo-protein and was active against p-nitrophenyl esters of $C_4$, $C_8$, and $C_{14}$. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 Trehalose Synthase의 유전자 클로닝 및 발현)

  • Kim, Hyun-Jung;Kim, Han-Woo;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.