• Title/Summary/Keyword: gene cloning and expression

검색결과 766건 처리시간 0.028초

Cloning and Sequence Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Yak

  • Li, Sheng-Wei;Jiang, Ming-Feng;Liu, Yong-Tao;Yang, Tu-Feng;Wang, Yong;Zhong, Jin-Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1673-1679
    • /
    • 2008
  • In order to study the biological function of gapdh gene in yak, and prove whether the gapdh gene was a useful intra-reference gene that can be given an important role in molecular biology research of yak, the cDNA sequence encoding glyceraldehyde-3-phosphate dehydrogenase from yak was cloned by the RT-PCR method using gene specific PCR primers. The sequence results indicated that the cloned cDNA fragment (1,008 bp) contained a 1,002 bp open reading frame, encoding 333 amino acids (AAs) with a molecular mass of 35.753 kDa. The deduced amino acids sequence showed a high level of sequence identity to Bos Taurus (99.70%), Xenopus laevis (94.29%), Homo sapiens (97.01%), Mus musculus (97.90%) and Sus scrofa (98.20%). The expression of yak's gapdh gene in heart, spleen, kidney and brain tissues was also detected; the results showed that the gapdh gene was expressed in all these tissues. Further analysis of yak GAPDH amino acid sequence implied that it contained a complete glyceraldehyde-3-phosphate dehydrogenase active site (ASCTTNCL) which ranged from 148 to 155 amino acid residues. It also contained two conserved domains, a NAD binding domain in its N-terminal and a complete catalytic domain of sugar transport in its C-terminal. The phylogenetic analysis showed that yak and Bos taurus were the closest species. The prediction of secondary structures indicated that GAPDH of yak had a similar secondary structure to other isolated GAPDH. The results of this study suggested that the gapdh gene of yak was similar to other species and could be used as the intra-reference to analyze the expression of other genes in yak.

Design and Cloning of the Gene for a Novel Insulin Analogue, $(B^{30}$-Homoserine) Human Insulin

  • Nam, Doo-H.;Ko, Jeong-Heon;Lee, Seung-Yup
    • Archives of Pharmacal Research
    • /
    • 제16권4호
    • /
    • pp.271-275
    • /
    • 1993
  • In order to prepare a novel human insulin analogue suhbstituted with homoserine at B$^{30}$ / position, (B$^{30}$ /-homoserine) human insulin, a synthetic gene was designed by linking directly a gene for B chain with that for A chain. This gene was constructed by enzymatic joining of 10 different synthetic oligonucleotides, and then inserted at the polylinker region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique was employed using amino terminal regions of lacZ gene up to Clal or hpal, and either of them has been located under tac promoter. The chemical induction of these fused genes by isopropyl-.betha.-D-thiogalactopyranoside (IPTG) gave a satisfactory level of expression in Escherichia coli harboring the ocnstructed plasmids. It was observed that the fused gene product as a single chain insulin precusor was produced more than 30% of total cell protein of E. coli as a form of inclusion body.

  • PDF

BmNPV의 p10 유전자를 이용한 새로운 전이벡터 개발 (Construction of the Novel Baculovirus Transfer Vector Using the p10 Gene of BmNPV)

  • 강석우;진병래
    • 한국잠사곤충학회지
    • /
    • 제39권2호
    • /
    • pp.180-185
    • /
    • 1997
  • To develope the novel baculovirus transfer vector, the p10 gene was cloned from the Bombyx mori nuclear polygedrosis virus (BmNPV) vB2 strain isolated from the B. mori larvae of sericultural farms. The novel transfer vector was constructed by using the p10 gene of BmNPV vB2 strain was 210 bp. The TAAG sequence at the -71 bp of upstream from translation initiator ATG and two polyadenylation signal site at the downstream from terminator TAA were also detected in the p10 gene. The 5' and 3' flanking region of the p10 gene amplified by PCR was cloned into pBluescriptII SK(+) and then transfer vector pBm10 was construceted. The 7.9 kb pBm10 was analysed by restriction enzymes and the map was confirmed. In order to determine the expression of foreign gene of pBm10, $\beta$-galactosidase gene was inserted in the SmaI site of foreign gene cloning site of pBm10. The pBm10 containing $\beta$-galactosidase gene was cotranfected wth genomic DNA of BmNPV vB2 into BmN-4 cells. The recombinant baculovirus expressing $\beta$-galactosidase was also produced polygedra in the infected cells. The results indicated that pBm10 is functional, suggesting that in the baculovirus expression vector system, the recombinant virus produced by pBm10 was effective by oral infection for the producing recombinant proteins in in vivo expression.

  • PDF

역전사효소(逆轉寫酵素) 유전자(遺傳子)의 cloning 에 관(關)한 연구(硏究) (Cloning of Reverse Transcriptase Gene of Avian Sarcoma Virus)

  • 김용웅;김광식;서용택
    • Applied Biological Chemistry
    • /
    • 제31권3호
    • /
    • pp.219-225
    • /
    • 1988
  • Avian Sarcoma Virus의 plasmid DNA중(中)의 역 이사효소의 유전자(遺傳子)를 온도의존성(溫度依存性) 발현(發現) vector인 pPL-lambda에 cloning하여 온도(溫度)에 민감한 phage ${\lambda}$의 repressor인 cI857 gene을 갖고 있는 bacteriophage lysogen인 N4830에 transformation시켰다. transformant를 pL promoter의 발현(發現)을 억제(抑制)하는 저온(低溫)$(28^{\circ}C)$에서 배양(培養)시킨 뒤, 이 repressor를 억제(抑制)하여 transcription을 촉진(促進)하게 하는 고온(高溫)$(42^{\circ}C)$에서 배양(培養)시킨 다음 균체(菌體)를 회수(回收)하여 RNA를 추출(抽出)하고 분석(分析)을 한 결과(結果) 도입(導入)된 역전사 효소 유전자(遺傳子)의 전사(轉寫)가 고온(高溫)에서 증대(增大)되었다.

  • PDF

Serratia marecscens에서 maltose 대사를 촉진하는 유전자의 클로닝 해석 (Analysis and cloning of the gene involved in activation of maltose metabolism in Serratia marcescens.)

  • 이승진;유주순;김혜선;이상철;정수열;최용락
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.21-25
    • /
    • 2000
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in Escherichia. coli TP2139 ( lac, crp). One of the cloned genes, pCKB17, was further analyzed. In order to find whether the increased expression of the gent was under the direction of maltose metabolism, we constructed several recombinant subclones. We have found that the clone, pCKB17AV, codes maltose metabolism stimulation(mms) gene. E. coli transformed with the cloned gene showed increase in the activity of maltose utilzation, The recombinant proteins expressed by multicopy and induction with IPTG, one polypeptide of 29-kDa, was confirmed by SDS-PAGE. The overexpression of maltose-binding proter protein in the presence of mms gene was confirmed by Western blot analysis. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

Saccharomyces cerevisiae에서 효모 Superkiller 유전자(SK13)의 발현 (Expression of a Yeast Superkiller Gene(SK13) in Saccharomyces cerevisiae)

  • 이상기
    • 미생물학회지
    • /
    • 제28권2호
    • /
    • pp.114-119
    • /
    • 1990
  • 효모 Saccharomyces cerevisiae의 염색체상에 존재하는 superkiller 유전자인 SKIB 유전자를 cloning 시켜 ski 변이 주내에서 발현시켰다. 이 유전자의 C-말단부위에 E. coli의 tacZ 구조 유전자를 융합시켜 효모와 E. coli의 shuttle vector인 pSR605를 제조하고 이를 효모에 형질전환 시킨 후 나타나는 $\beta$-galactosidase의 융합단백질을 확인할 수 있었다.

  • PDF

cDNA Cloning and mRNA Expression of A Cuticle Protein Gene Homo­logue from Protaetia brevitarsis

  • Kim Iksoo;Choi Yong Soo;Lee Eun Mee;Kim Mi Ae;Yun Enn Young;Ahn Mi Young;Jin Bynng Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제11권1호
    • /
    • pp.67-70
    • /
    • 2005
  • A cuticle protein gene, PbLCP12.1, from the white­spotted flower chafer, Protaetia brevitarsis, was isolated and characterized. The gene contains an ORF of 336 nucleotides capable of encoding a 113 amino acid polypeptide with a predicted molecular mass of 12,138 Da and pI of 4.15. The PbLCP12.1 protein contained a type-specific consensus sequence identifiable in other insect cuticle proteins. The deduced amino acid sequence of the PbLCP12.1 cDNA is most similar to Bombyx mori cuticle protein BmLCP18 (37$\%$ protein sequence identity). Northern blot analysis revealed that PbLCP12.1 showed the epidermis-specific expression.

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF

Molecular Cloning of Adipose Tissue-specific Genes by cDNA Microarray

  • Kim, Kee-Hong;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권12호
    • /
    • pp.1837-1841
    • /
    • 2003
  • In an attempt to isolate novel molecules that may play a regulatory role in adipocyte differentiation, we devised an experimental strategy to identify adipose tissue-specific genes by modifying cDNA microarray technique. We used genefilter membranes containing approximately 15,000 rat non-redundant EST clones of which 4,000 EST were representative clones of known genes and 11,000 ESTs were uncharacterized clones. A series of hybridization of genefilter membranes with cDNA probes prepared from various rat tissues and nucleic acids sequence analysis allowed us to identify two adipose-tissue specific genes, adipocyte-specific secretory factor (ADSF) and H-rev107. Verification of tissue-specific expression patterns of these two genes by Northern blot analysis showed that ADSF mRNA is exclusive expressed in adipose tissue and the H-rev107 mRNA is predominantly expressed in adipose tissue. Further analysis of gene expression of ADSF and H-rev107 during 3T3-L1 adipocyte differentiation revealed that the ADSF and H-rev107 gene expression patterns are closely associated with the adipocyte differentiation program, indicating their possible role in the regulation of adipose tissue development. Overall, we demonstrated an application of modified cDNA microarray technique in molecular cloning, resulting in identification of two novel adipose tissue-specific genes. This technique will also be used as a useful tool in identifying novel genes expressed in a tissue-specific manner.

Cloning and Expression in Pichia pastoris of a New Cytochrome P450 Gene from a Dandruff-causing Malassezia globosa

  • Lee, Eun-Chang;Ohk, Seul-Ong;Suh, Bo-Young;Park, Na-Hee;Kim, Beom-Joon;Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • 제26권1호
    • /
    • pp.47-52
    • /
    • 2010
  • The Malassezia fungi are responsible for various human skin disorders including dandruff and seborrheic dermatitis. Of the Malassezia fungi, Malassezia globosa (M. globosa) is one of the most common in human scalp. The completed genome sequence of M. globosa contains four putative cytochrome P450 genes. To determine the roles of Malassezia P450 enzymes in the biosynthesis of ergosterol, we isolated MGL3996 gene from M. globosa chromosomal DNA by PCR. The MGL3996 gene encodes an enzyme of 616 amino acids, which shows strong similarity with known CYP52s of other species. MGL3996 gene was cloned and expressed in Pichia pastoris (P. pastoris) heterologous yeast expression system. Using the yeast microsomes expressing MGL3996 protein, a typical P450 CO-difference spectrum was shown with absorption maximum at 448 nm. SDS-PAGE analysis revealed a protein band of apparent molecular weight 69 kDa and Western blot with anti-histidine tag antibody showed that MGL3996 was successfully expressed in P. pastoris. Cloning and expression of a new P450 gene is an important step to study the P450 monooxygenase system of M. globosa and to understand the role of P450 enzymes in pathophysiology of dandruff.