• Title/Summary/Keyword: gene analysis

Search Result 8,197, Processing Time 0.04 seconds

Gene Expression Pattern Analysis via Latent Variable Models Coupled with Topographic Clustering

  • Chang, Jeong-Ho;Chi, Sung Wook;Zhang, Byoung Tak
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • We present a latent variable model-based approach to the analysis of gene expression patterns, coupled with topographic clustering. Aspect model, a latent variable model for dyadic data, is applied to extract latent patterns underlying complex variations of gene expression levels. Then a topographic clustering is performed to find coherent groups of genes, based on the extracted latent patterns as well as individual gene expression behaviors. Applied to cell cycle­regulated genes of the yeast Saccharomyces cerevisiae, the proposed method could discover biologically meaningful patterns related with characteristic expression behavior in particular cell cycle phases. In addition, the display of the variation in the composition of these latent patterns on the cluster map provided more facilitated interpretation of the resulting cluster structure. From this, we argue that latent variable models, coupled with topographic clustering, are a promising tool for explorative analysis of gene expression data.

Molecular Cloning and Expression of $\alpha$-Amylase Gene from Bacillus stearothermophilus in Zymomonas mobilis ZM4

  • Song, Ki-Bang
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 1992
  • In order to broaden the spectrum of substrate utilization of a Gram negative bacterium Zymomonas mobilis which has a great potential as an industrial ethanol producing microorganism, cloning of $\alpha$-amylase gene into Z. mobilis ZM4 was tried. The $\alpha$-amylase gene was isolated from Bacillus stearothermophilus. By Southern blot analysis, it was proven that the $\alpha$-amylase gene fragment was originated from a naturally occuring plasmid of B. stearothermophilus ATCC 31195. To place $\alpha$-amylase gene under the control of Z. mobilis promoter, two different Z. mobilis expression vectors, pZA26 and pLOI204, were used. The truncated $\alpha$-amylase gene was then introduced into these vectors. Both qualitative and quantitative activities of $\alpha$-amylase were observed in Z. mobilis cells harboring these plasmids with the $\alpha$-amylase gene inserted. Gas chromatographic analysis of ethanol showed that one of the Z. mobilis transconjugants was capable of producing 67 mM ethanol from rich medium(RM) containing 5% soluble starch as a sole carbon source.

  • PDF

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

HisCoM-PAGE: software for hierarchical structural component models for pathway analysis of gene expression data

  • Mok, Lydia;Park, Taesung
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.45.1-45.3
    • /
    • 2019
  • To identify pathways associated with survival phenotypes using gene expression data, we recently proposed the hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE) method. The HisCoM-PAGE software can consider hierarchical structural relationships between genes and pathways and analyze multiple pathways simultaneously. It can be applied to various types of gene expression data, such as microarray data or RNA sequencing data. We expect that the HisCoM-PAGE software will make our method more easily accessible to researchers who want to perform pathway analysis for survival times.

Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Moreno, Jose;Jacome-Lopez, Karina;Zentella-Dehesa, Alejandro;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2519-2525
    • /
    • 2016
  • There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile.

Analysis and mapping of the re-1 gene for reduced embryo size in rice

  • Kien, Trinh Hong;Oh, Ji Min;Yang, Paul;Hong, Soon Kwan;Ahn, Sang Nag
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • The objective of this study was to map the gene for reduced embryo size in rice using DNA markers. The reduced embryo size mutant was induced from N-methyl-N-nitrosourea (MNU) treated Taichung 65. Genetic analysis revealed that the phenotype of the reduced embryo was controlled by a single recessive gene, designated as re-1. For mapping the gene controlling embryo size, an $F_2$ population was developed from a cross between the Korean Tongil-type, Milyang 23 (Oryza sativa ssp. indica) and the mutant. The ratio of $F_2$ seeds nearly fitted to 3:1 ratio, indicating that this phenotype was controlled by a single recessive gene. Bulked sergeant analysis was performed with SSR markers. The gene for the reduced embryo size was detected on chromosome 1. The gene was further mapped between two SSR markers, RM315 and RM265 on chromosome 1 (approximately 1.5 Mb interval). The linked markers will facilitate selection of this grain character in a breeding program and provide the foundation for positional cloning of this gene.

Insertion/deletion (I/D) in the Angiotensin-converting Enzyme Gene and Breast Cancer Risk: Lack of Association in a Meta-analysis

  • Pei, Xin-Hong;Li, Hui-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5633-5636
    • /
    • 2012
  • Purpose: Breast cancer is an important cause of cancer-related death in women. Numerous studies have evaluated the association between the insertion/deletion (I/D) polymorphism in the angiotensin-converting enzyme (ACE) gene and breast cancer risk. However, the specific association is still controversial rather than conclusive. Therefore, we performed a meta-analysis of related studies to address this controversy. Methods: PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association between the I/D polymorphism in the ACE gene and susceptibility to breast cancer. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Results: 10 separate studies of 7 included articles with 10,888 subjects on the relation between the I/D polymorphism in the ACE gene and breast cancer were analyzed by meta-analysis, and our results showed no association between the I/D polymorphism in the ACE gene and breast cancer in total population and different populations. No publication bias was found in the present study. Conclusions: The ACE I/D polymorphism may not be associated with breast cancer risk. Further large and well-designed studies are needed to confirm this conclusion.

Characterization of HRD3, a Schizosaccharomyces pombe Gene Involved in DNA Repair and Cell Viability

  • Choi, In-Soon
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.159-164
    • /
    • 2003
  • The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. The RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA-RNA helicase activities. To examine the extent of conservation of structure and function of a S. pombe RAD3 during eukaryotic evolution, the RAD3 homolog gene was isolated by screening of genomic DNA library. The isolated gene was designated as HRD3 (homolog of RAD3 gene). Southern blot analysis confirmed that S. pombe chromosome contains the same DNA as HRD3 gene and this gene exists as a single copy in S. pombe. The transcript of 2.8 kb was detected by Northern blot analysis, The level of transcripts increased by ultraviolet (UV) irradiation, indicating that HRD3 is one of the UV-inducible genes in S. pombe. Furthermore, the predicted partial sequence of HRD3 protein has 60% identity to S. cerevisiae RAD3 gene. This homology was particularly striking in the regions identified as being conserved in a group of DNA helicases. Gene deletion experiments indicate that the HRD3 gene is essential for viability and DNA repair function. These observations suggest evolutionary conservation of other protein components with which HRD3 might interact in mediating its DNA repair and viability functions.

Gene Reangement through 151 bp Repeated Sequence in Rice Chloroplast DNA (벼 엽록체 DNA내의 151 bp 반복염기서열에 의한 유전자 재배열)

  • Nahm, Baek-Hie;Kim, Han-Jip
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.208-214
    • /
    • 1993
  • To investigate the gene rearrangement via short repeated sequences in chloroplast DNA, the pattern of heterologous gene clusters containing the 151 bp repeated sequence with the development of plastid was compared in rice and the homologous gene clusters from various plant sources were searched for comparative analysis. Southern blot analysis of rice DNA using rp12 gene containing 151 bp repeated sequence as a probe showed the presence of heterologous gene clusters. Such heterologous gene clusters varied with the development of plastid. Also it was observed that the heterologous gene clusters were observed in all of the rice cultivars used in this work. Finally the comparative analysis of DNA sequence of the homologous gene clusters from various plants showed the evolutionary gene rearragngement via short repeated sequence among plants. These results suggest the possible relationship between the plastid development and gene rearrangement through short repeated sequences.

  • PDF

Sequence and Characterization of the Genomic Clone of the FVFD16 and FVFD30 Gene Isolated from Flammulina velutipes (팽이버섯에서 분리된 FVFD16과 FVFD30 유전자의 게놈클론의 염기서열 및 특성)

  • Kim, Dool-Yi;Azuma, Tomo-Nori
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.26-31
    • /
    • 2000
  • We isolated genomic clone of FVFD16 and FVFD30 gene specifically expressed during fruit body formation of Flammulina velutipes [(Curt: Fr.) Sing] and determinated the sequences. The FVFD16 gene is including two introns in open reading frame, and FVFD30 gene is including four introns. The introns were matched GT/AG rule. The FVFD16 and FVFD30 genes contained CAAT box with similarity arrange and TATA box. CT-rich region was presented before the transcription start point. FVFD30 gene is investigated that expected the most activity of CCACC arrange. The result of FVFD16 gene analysis showed 80% homology by cDNA clone that is gene family. From the results of genomic southern blot analysis, we presumed more than two copy number gene family of FVFD16 and FVFD30 gene.

  • PDF