• Title/Summary/Keyword: gels

Search Result 729, Processing Time 0.023 seconds

Assessing Water Quality of Siheung Stream in Shihwa Industrial Complex Using Both Principal Component Analysis and Multi-Dimensional Scaling Analysis of Korean Water Quality Index and Microbial Community Data (Principal Component Analysis와 Multi-Dimensional Scaling 분석을 이용한 시화공단 시흥천의 수질지표 및 미생물 군집 분포 연구)

  • Seo, Kyeong-Jin;Kim, Ju-Mi;Kim, Min-Jung;Kim, Seong-Keun;Lee, Ji-Eun;Kim, In-Young;Zoh, Kyung-Duk;Ko, Gwang-Pyo
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.517-525
    • /
    • 2009
  • The water quality of Lake Shihwa had been rapidly deteriorating since 1994 due to wastewater input from the watersheds, limited water circulation and the lack of a wastewater treatment policy. In 2000, the government decided to open the tidal embankment and make a comprehensive management plan to improve the water quality, especially inflowing stream water around Shihwa and Banwol industrial complex. However, the water quality and microbial community have not as yet been fully evaluated. The purpose of this study is to investigate the influent water quality around the industrial area based on chemical and biological analysis, and collected surface water sample from the Siheung Stream, up-stream to down-stream through the industrial complex, Samples were collected in July 2009. The results show that the downstream site near the industrial complex had higher concentrations of heavy metals (Cu, Mn, Fe, Mg, and Zn) and organic matter than upstream sites. A combination of DGGE (Denaturing Gradient Gel Electrophoresis) gels, lists of K-WQI (Korean Water Quality Index), cluster analysis, MDS (Multi-Dimensional Scaling) and PCA (Principal Component Analysis) has demonstrated clear clustering between Siheung stream 3 and 4 and with a high similarity and detected metal reducing bacteria (Shewanella spp.) and biodegrading bacteria (Acinetobacter spp.). These results suggest that use of both chemical and microbiological marker would be useful to fully evaluate the water quality.

Synthesis and Characterization of the Large Single Crystal of Fully K+-exchanged Zeolite X (FAU), |K80|[Si112Al80O384]-FAU (Si/Al=1.41)

  • Lim, Woo-Taik;Jeong, Gyo-Cheol;Park, Chang-Kun;Park, Jong-Sam;Kim, Young-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Large colorless single crystals of sodium zeolite X, stoichiometry |Na80 |[Si112Al80O384]-FAU, with diameters up to 200 μm and Si/Al = 1.41 have been synthesized from gels with the composition of 2.40SiO2 : 2.00NaAlO2 : 7.52NaOH : 454H2O : 5.00TEA. One of these, a colorless octahedron about 200 μm in cross-section has been treated with aqueous 0.1 M KNO3 for the preparation of K+-exchanged zeolite X. The crystal structure of |K80|[Si112Al80O384]-FAU per unit cell, a = 24.838(4) A, dehydrated at 673 K and 1 × 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 294 K. The structure was refined using all intensities to the final error indices (using only the 707 reflections for which Fo > 4σ (Fo)) R1 = 0.075 (based on F) and R2 = 0.236 (based on F2). About 80 K+ ions per unit cell are found at an unusually large number of crystallographically distinct positions, eight. Eleven K+ ions are at the centers of double 6-rings (D6Rs, site I; K-O = 2.492(6) A and O-K-O (octahedral) = 88.45(22)o and 91.55(22)o). Site-I' position (in the sodalite cavities opposite D6Rs) is occupied by five K+ ions per unit cell; these K+ ions are recessed 1.92 A into the sodalite cavities from their 3-oxygen planes (K-O = 2.820(19) A, and O-K-O = 78.6(6)o). Twety-three K+ ions are found at three nonequivalent site II (in the supercage) with occupancies of 5, 9, and 9 ions; these K+ ions are recessed 0.43 A, 0.75 A, and 1.55 A, respectively, into the supercage from the three oxygens to which it is bound (K-O = 2.36(13) A, 2.45(13) A, and 2.710(13) A, O-K-O = 116.5(20)o, 110.1(17)o, and 90.4(6)o, respectively). The remaining sixteen, thirteen, and twelve K+ ions occupy three sites III' near triple 4-rings in the supercage (K-O = 2.64(3) A, 2.94(3) A, 2.73(5) A, 2.96(6) A, 3.06(4) A, and 3.08(3) A).

Synthesis of Single Crystalline Analcime and Its Single-crystal Structure, |Na0.94(H2O)|[Si2.06Al0.94O6]-ANA: Determination of Cation Sites, Water Positions, and Si/Al Ratios (결정성 아날심(|Na0.94(H2O)|[Si2.06Al0.94O6]-ANA)의 합성 및 단결정구조: 양이온 및 물 분자의 위치, Si/Al 비의 결정)

  • Seo, Sung-Man;Suh, Jeong-Min;Ko, Seong-Oon;Lim, Woo-Taik
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.570-574
    • /
    • 2011
  • Large colorless single crystals of analcime with diameters up to 0.20 mm have been synthesized from gels with the composition of $3.00SiO_2$ : $1.50NaAlO_2$ : 8.02NaOH : $454H_2O$ : 5.00TEA. The fully $Na^+$-exchanged analcime have been prepared with aqueous 0.1 M NaCl (pH adjusted from 6 to 11 by dropwise addition of NaOH). The single-crystal structure of hydrated $|Na_{0.94}(H_2O)|[Si_{2.06}Al_{0.94}O_6]$-ANA per unit cell, a=13.703(3) ${\AA}$, has been determined by single-crystal X-ray diffraction technique in the orthorhombic space group Ibca at 294 K. The structure was refined using all intenties to the final error indices (using only the 1,446 reflections for which $F_o$ > $4{\sigma}(F_o))R_1/wR_2$ = 0.054/0.143. About 15 $Na^+$ ions are located at three nonequivalent positions and octahedrally coordinated. The chemical composition is $Na_{0.94}(H_2O)Si_{2.06}Al_{0.94}O_6$. The Si/Al ratio of synthetic analcime is 2.19 determined by the occupations of cations, 14.79, in the single-crystal determination work.

Effect of Sucrose and Gluten on Glass Transition, Gelatinization, and Retrogradation of Wheat Starch (밀전분의 유리전이와 호화 및 노화에 대한 sucrose와 글루텐의 영향)

  • Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.288-293
    • /
    • 2004
  • Differential scanning calorimetry (DSC) was used to study effects of sucrose and gluten on wheat starch glass transition, gelatinization, and retrogradation. Glass transition temperature ($T_{g}$) of wheat starch decreased as the ratio of sucrose or gluten to starch increased. Both peak temperature ($T_{G}$) and enthalpy values of gelatinization endotherm increased or decreased with increasing ratio of sucrose or gluten, respectively. Wheat starch gel with no sucrose and gluten recrystallized up to 4 weeks of storage at $4^{\circ}C$, whereas those with sucrose and gluten completed recrystallization within 1 week. Both wheat starch gels with no sucrose and gluten, and those with sucrose and gluten at storage temperature of $32^{\circ}C$ recrystallized up to 4 weeks, with wheat starch-sucrose-gluten (1 : 0.5 : 0.12) system, which had highest ratios of gluten and sucrose to starch, showing lowest recrystallization. Nucleation and propagation rates of starch gel recrystallization based on polymer crystallization principles can be converted into peak width (${\delta}T$) and peak temperature ($T_{R}$) of retrogradative endotherm by DSC, because higher nucleation rate at storage temperature of $4^{\circ}C$ close to $T_{g}$ showed higher ${\delta}T$, whereas higher propagation rate at $32^{\circ}C$ (close to $T_{G}$) had higher $T_{R}$.

Effect of Freezing Conditions on the Formation of Ice Crystals in Food during Freezing Process (식품의 동결중에 생성되는 빙결정에 미치는 동결조건의 영향)

  • 공재열;김정한;김민용;배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 1992
  • The reaching time to the freezing point was to be fast in the order of 2% agar gel, 5% agar gel, 20% gelatin gel, pork, respectively. The freezing time and the passing time through the zone of the maximum ice crystal formation had linear relationship with the coolant temperature. The average diameter d$_{p}$ of ice crystal in a soybean protein gel and the moving of freezing front were represented an inverse proportion, and the moving velocity of freezing front was shown as 3.4$\times$10$^{-6}$ $\textrm{cm}^2$/sec from predicted theoretical formula. This value was very close to experimental results. The storage temperature did not give any influences for the growth of ice crystal in inside soybean protein gels during freezing conservation. The relationship between freezing condition and structure of freezing front was as follows : (moving velocity of freezing front) : (mass transfer rate of water at freezing point)$\times$(surface area of freezing front).

  • PDF

Proteomic Changes in Odae Polished White Rice Grown at Different Cultivation Conditions (재배환경에 따라 변화하는 오대벼 백미의 단백질체 분석)

  • Lee, Ju-Young;Lee, Jin-Woo;Kim, Young-Ran;Yeom, Yu-Jin;Lim, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • It has been known that the proteome profiles in the period of growth and development of rice are changed by the growth conditions including temperature, soil, and fertilization. In this study, the proteome profiles of Odae polished white rice grown in Chulwon and Chilgog were compared on 2-dimensional(D) gels. The differentially expressed proteins were selected from the 112 identified total proteins and classified into functional groups. The most significantly differentially expressed proteins were stress responsive proteins; Ent-kaur-16-ene synthase, which is responsible for synthesizing a plant hormone gibberellin, was expressed in Chulwon rice and heat shock proteins were in Chilgog rice, respectively. Xylanase inhibitor protein, which inhibits the enzyme xylanase produced by pathogenic fungi and Bacilli, was expressed significantly high in Chilgog rice grown at high temperature. Differential expressions of transporter proteins were observed both in Chulwon and Chilgog rice. Regarding the facts that Chilgog rice contained relatively higher amount of proteins than Chulwon rice and Chulwon rice showed large number of proteins were differentially expressed, it can be concluded that different cultivation conditions could change the protein expression profiles in rice in various ways, including elevation of protein amount or differential expressions of specific proteins, etc. The results suggest that the characteristics of the profiles of the proteome in the polished white rice are definitely changed by the environmental factors including high temperature. The results can be utilized for the development of the proper cultivation conditions for the production of high quality rice with good palatability.

Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity (생균력 증진을 위한 농업용 미생물제 미세캡슐화)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.287-293
    • /
    • 2005
  • In this work, to develop soil inoculant which maintains stable viable cells and normalized quality, studies on micro-encapsulation with bacteria and yeast cells were performed by investigating materials and methods for micro-encapsulation as well as variation and stability of encapsulated cells. Preparation of capsule was conducted by application of extrusion system using micro-nozzle and peristaltic pump. K-carragenan and Na-alginate were selected as best carrier for gelation among K-carageenan, Na-alginate, locust bean gum, cellulose acetate phthalate (CAP), chitosan and gelatin tested. Comparing the gels prepared with Bacillus sp. KSIA-9 and carriers of 1.5% concentration, although viable cell of K-carragenan and Na-alginate was six times higher than those of other, Na-alginate was finally selected as carrier for gelation because it is seven times cheaper than K-carragenan. The gel of 1.5% Na-alginate was also observed to have the best morphology with circular hardness polymatrix and highest viable cell. When investigating the stability of encapsulated cells and the stabilizer effect, free cells were almost dead within 30 or 40 days whereas encapsulated cells decreased in 10% after 30 days and 15-30% even after 120 days. As stabilizer for maintaining viable cell, both 1% starch and zeolite appeared to possess the level of 70-80% cell for bacteria and yeast until after 120 days.

EFFECT OF INCREASING APPLICATION TIME OF SINGLE BOTTLE ADHESIVES TO MICROTENSILE BOND STRENGTH OF DRIED DENTIN (수종의 단일병 접착제의 적용 시간 연장이 건조 상아질의 미세인장 결합강도에 미치는 영향)

  • Kim, Hak-Geun;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.435-441
    • /
    • 2005
  • The purpose of this study was to evaluate the effect of increasing application time of single bottle adhesives (SBA) to microtensile bond strength (MTBS) of dried dentin. To expose the superficial dentin surfaces, human molars were sectioned perpendicular to the long axis of tooth. $32\%$ phosphoric acid gels were applied for 15s and rinsed. The teeth were randomly assigned to 3 groups ; S group (Single Bond), O group (One-Step), P group (Prime & Bond NT). Each group was divided to 3 subgroups (W: dentin wipe with wet gauge and light cured immediately, D, dentin dried for 30s and light cured immediately, 30: dentin dried for 30s and light cured after applying SBA for 30s). Composite resin was built up on the dentin surface and sectioned to obtain 20 specimens with $1mm^2$ cross sectional area and the MTBS was measured. For Single Bond, the mean MTBS of S-W and S-30 group were higher than that of S-D group statistically (P<0.05). For One-Step, the mean MTBS of O-D group was statistically lower than that of O-W group (P<0.05). For Prime & Bond NT, the mean MTBS of P-30 group was statistically lower than that of P-D group (P<0.05).

A Study on Elution Behavior of Polystyrene Copolymers in Gel Permeation Chromatography (겔 투과 크로마토그래피에서 폴리스티렌 혼성중합체들의 용리거동에 관한 연구)

  • Lee Dai Woon;Eum Chul Hun
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • The elution behavior of polystyrenes(PS), polymethylmethacrylates (PMMA), polybutadienes(PB), PS-PMMA(SM) block copolymers and PS-PB star shaped copolymers on the cross-linked polystyrene gels was studied. An interpretation was proposed for the plots of log hydrodynamic volume versus retention volume of solutes in the mobile phases such as tetrahydrofuran, toluene, chloroform, methylene chloride and tetrahydrofuran-cyclohexane mixture. In order to predict the retention of solutes from their physical properties, multiple stepwise regression analysis was applied to obtain the correlation. The distribution coefficients($K_p$) of solute-gel interactions in GPC for homopolymers and PS copolymers were also obtained in terms of network-limited separation mechanism. In the cases of PS and PB, $K_p$ values approach unity, while $K_p$ values for PMMA decrease as MW increase in the good solvent, but in poor solvent, $K_p$ values increase as MW increase. $K_p$ values of PS copolymers are dependent on their MW and composition, therefore, morohology of SM block copolymer is predicted to be random phase. A single universal plot of log[η]M vs. $(V_r-V_o)/K_p$

  • PDF

Development of Reinforcement Grout Materials Using Blast Furnace Slag Powder and Aramid Fiber (고로슬래그 미분말과 아라미드 섬유를 이용한 보강그라우트재 개발)

  • Seo, Hyeok;Park, Kyung-Ho;Kim, Chan-Jung;Kim, Ho-Chul;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of structures damaged resulting from settlement due to elevation and vibration or differential settlement, and for cutoff. The purpose of this research is to enhance the compressive strength of grout materials by using aramid fiber and develop a high-strength ground improvement method by using blast furnace slag powder. In this regard, this study has conducted a uniaxial compression test after checking the high charge (higher than 50%) of the ratio of blast furnace slag powder and cement at 100:0, 70:30 and 40:60%, adding the aramid mixture based on 0, 0.5 and 1.0% of the cement and furnace slag powder weight and creating sand gels based on surface oiling rate of 0.7 and 1.2%. For the environmental review evaluation, a heavy metal exudation test and a pH test measurement have been conducted. The experiment results showed that 1% increase of aramid fiber led to 1.3 times greater uniaxial compression intensity. As for the hexavalent chrome, a 30% increase in blast furnace slag powder led to approximately 50% decrease in heavy metal exudation. However, the pH test revealed that a 30% increase in blast furnace slag powder resulted in approximately 0.5 increase in pH. Further research on the pH part is needed in the future.