Effect of Sucrose and Gluten on Glass Transition, Gelatinization, and Retrogradation of Wheat Starch

밀전분의 유리전이와 호화 및 노화에 대한 sucrose와 글루텐의 영향

  • Jang, Jae-Kweon (Department of Food Biotechnology, Chungkang College of Cultural Industries) ;
  • Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University)
  • 장재권 (청강문화산업대학 식품생명과학과) ;
  • 변유량 (연세대학교 생명공학과)
  • Published : 2004.04.30

Abstract

Differential scanning calorimetry (DSC) was used to study effects of sucrose and gluten on wheat starch glass transition, gelatinization, and retrogradation. Glass transition temperature ($T_{g}$) of wheat starch decreased as the ratio of sucrose or gluten to starch increased. Both peak temperature ($T_{G}$) and enthalpy values of gelatinization endotherm increased or decreased with increasing ratio of sucrose or gluten, respectively. Wheat starch gel with no sucrose and gluten recrystallized up to 4 weeks of storage at $4^{\circ}C$, whereas those with sucrose and gluten completed recrystallization within 1 week. Both wheat starch gels with no sucrose and gluten, and those with sucrose and gluten at storage temperature of $32^{\circ}C$ recrystallized up to 4 weeks, with wheat starch-sucrose-gluten (1 : 0.5 : 0.12) system, which had highest ratios of gluten and sucrose to starch, showing lowest recrystallization. Nucleation and propagation rates of starch gel recrystallization based on polymer crystallization principles can be converted into peak width (${\delta}T$) and peak temperature ($T_{R}$) of retrogradative endotherm by DSC, because higher nucleation rate at storage temperature of $4^{\circ}C$ close to $T_{g}$ showed higher ${\delta}T$, whereas higher propagation rate at $32^{\circ}C$ (close to $T_{G}$) had higher $T_{R}$.

전분, 단백질, 지방, 당류 등의 복잡한 다성분계로 구성된 전분질식품의 노화를 억제하기 위한 기초자료를 얻기 위해 전체 수분함량 50%의 동일한 조건에서 밀전분과 sucrose와 글루텐을 모델계로 하여 전분의 유리전이와 호화 및 노화현상을 연구하였다. Sucrose나 글루텐은 밀전분에 대한 첨가비율이 증가함에 따라 밀전분의 유리전이온도($T_G$)를 감소시켰으며 sucrose는 밀전분의 호화온도($T_G$)와 호화엔탈피값(${\Delta}H_G$)을 증가시켰다. 글루텐을 포함한 시료들은 글루텐을 포함하지 않은 시료들보다 낮은 $T_G$${\triangle}H_G$값을 나타내었다. 저장온도 $4^{\circ}C$에서 4주간 저장한 밀전분겔 시료들 중 sucrose와 글루텐을 포함하지 않는 밀전분겔은 4주의 저장기간 동안 재결정이 계속된 반면 밀전분-sucrose계와 밀전분-sucrose-글루텐계는 1주의 저장기간에 거의 재결정이 완료되었다. 저장온도 $32^{\circ}C$에서 모든 전분겔 시료들은 저장기간 1주의 저장기간에서 재결정 발생속도가 컸으며 4주의 저장기간까지 느린 속도이지만 계속적으로 재결정이 발생하였으며 밀전분에 대해 sucrose와 글루텐의 첨가비가 가장 높았던 1 :0.5 :0.12의 밀전분-sucrose-글루텐계의 노화된 정도가 가장 적었다. DSC로 측정한 노화의 결과들은 폴리머재결정원리에서의 결정의 핵형성율과 핵성장율이 노화 endotherm의 peak 폭(${\delta}T$)과 peak온도($T_R$)로 전환된다는 실험적 결과로부터 노화에 대한 해석이 가능하였다.

Keywords

References

  1. Noel TR, Ring SG, Whittam MA. Glass transitions in low-moisture foods. Trends Food Sci. Technol. 1: 62-67 (1990) https://doi.org/10.1016/0924-2244(90)90048-4
  2. Wang YJ, Jane J. Correlation between glass transition temperature and starch. Cereal Chem. 71: 527-531 (1994)
  3. To EC, Flink JM, 'Collapse', a structural transition in freeze-dried carbohydrates. I-III. J. Food Technol. 13: 551-594 (1978) https://doi.org/10.1111/j.1365-2621.1978.tb00836.x
  4. Slade L, Levine H. Recent advances in starch retrogradation. In: Industrial Polysaccharides. Stivala SS, Cresenzi V, Dea ICM. (ed). Gordon and Breach Science, New York, NY, USA (1987)
  5. Slade L, Levine H. Structural stability of intermediate moisture foods-a new understanding? pp. 115-147. In: Food Structure, Its Creation and Evaluation. Blanshard JMV, Mitchell JR (ed). Butterworths, London, UK (1988)
  6. Morris VJ. Starch gelation and retrogradation. Trends Food Sci. Technol. 1: 2-6 (1990) https://doi.org/10.1016/0924-2244(90)90002-G
  7. Kalichevsky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym. 18: 77-88 (1992) https://doi.org/10.1016/0144-8617(92)90129-E
  8. Kalichevsky MT, Blanshard JMV. A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA. Carbohydr. Polym. 19: 271-278 (1992) https://doi.org/10.1016/0144-8617(92)90080-A
  9. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. A study of the glass transition of amylopectin-sugar mixture. Polymer 34: 346-358 (1993) https://doi.org/10.1016/0032-3861(93)90088-R
  10. Zeleznak KJ, Hoseney RC. The glass transition in starch. Cereal Chem. 64: 121-124 (1987)
  11. Donovan JW. Phase transitions of the starch-water system. Biopolymers 18: 263-275 (1979) https://doi.org/10.1002/bip.1979.360180204
  12. Biliaderis CG. Structures and phase transitions of starch in food systems. Food Technol. 3: 98-109 (1992)
  13. Jang JK, Lee SH, Cho SC, Pyun YR. Effect of sucrose on glass transition, gelatinization and retrogradation of wheat starch. Cereal Chem. 78: 186-192 (2001) https://doi.org/10.1094/CCHEM.2001.78.2.186
  14. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. Glass transtion of gluten l: Gluten and gluten-sugar mixtures. Int. J. Biol. Macromol. 14: 257-266 (1992) https://doi.org/10.1016/S0141-8130(05)80038-8
  15. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. Glass transtion of gluten 2: Gluten and gluten-lipid mixtures. Int. J. Biol. Macromol. 14: 267-273 (1992) https://doi.org/10.1016/S0141-8130(05)80039-X
  16. Slade L, Levine H. Non-equilibrium melting of native granular starch Part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbohydr. Polym. 8: 183-208 (1988) https://doi.org/10.1016/0144-8617(88)90002-1
  17. Hatley RHM, van den Berg C, Franks F. The unfrozen water content of maximally freeze concentrated carbohydrate solutions: validity of the methods used for its determination. Cryo-Lett. 12: 113-124 (1991)
  18. Jovanovich G, Zamponi RA, Lupano CE, Anon MC. Effect of water content on the formation and dissociation of the amyloselipid complex in wheat flour. J. Agric. Food Chem. 40: 1789-1793 (1992) https://doi.org/10.1021/jf00022a012
  19. Zeleznak KJ, Hoseney RC. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 63: 407-411 (1986)
  20. Ferry JD. Viscoelastic Properties of Polymers. John Wiley & Sons, New York, NY, USA (1980)
  21. Evans ID, Haisman DR. The effect of solutes on the gelatinization temperature range of potato starch. Starch 34: 224-231 (1982) https://doi.org/10.1002/star.19820340704
  22. Chinachoti P, Kim-Shin MS, Mari F, Lo L. Gelatinization of wheat starch in the presence of sucrose and sodium chloride: Correlation between gelatinization temperature and water mobility as determined by oxygen-17 nuclear magnetic resonance. Cereal Chem. 68: 245-249 (1991)
  23. Johnson JM, Davis EA, Gorden J. Interaction of starch and sugar water measured by electron spin resonance and differential scanning calorimetry. Cereal Chem. 67: 286-291 (1990)
  24. Slade L, Levine H. Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30: 115-360 (1991) https://doi.org/10.1080/10408399109527543
  25. Eliasson AC, Tjerneld E. Adsorption of wheat proteins on wheat starch granules. Cereal Chem. 67: 366-372 (1990)
  26. Ward KEJ, Hoseney RC, Seib PA. Retrogradation of amylopectin from maize and wheat starches. Cereal Chem. 71: 150-155 (1994)
  27. Maxwell JL, Zobel HF. Model studies on cake staling. Cereal Foods World 23: 124-128 (1978)
  28. Chang SM, Lin LC. Retrogradation of rice starches studied by differential scanning calorimetry and influence of sugars, NaCl and lipids. J. Food Sci. 56: 564-566 (1991) https://doi.org/10.1111/j.1365-2621.1991.tb05325.x
  29. Erlander SR, Erlander LG. Explanation of ionic sequences in various phenomena X: Protein carbohydrate interactions and the mechanism for the staling of bread. Starch 21: 305-313 (1969) https://doi.org/10.1002/star.19690211202
  30. Bechtel WG, Meisner DF. Staling studies of bread made with flour fractions. III. Effect of crumb moisture and tailings starch. Cereal Chem. 36: 176-184 (1959)
  31. Willhoft EMA. Bread staling, I. Experiment study II. Theoretical study. J. Sci. Food Agric. 22: 176-180 (1971) https://doi.org/10.1002/jsfa.2740220406
  32. Kulp K, Ponte Jr. JG. Staling of white pan bread: Fundamental causes. CRC Crit. Food Sci. Nutr. 15: 1-48 (1981) https://doi.org/10.1080/10408398109527319
  33. Zeleznak KJ, Hoseney RC. Characterization of starch from bread aged at different temperatures. Starch 39: 231-233 (1987) https://doi.org/10.1002/star.19870390704