• Title/Summary/Keyword: wheat starch

Search Result 312, Processing Time 0.026 seconds

Comparison of structure and physicochemical properties of commercial domestic and imported wheat starch (시판 우리밀과 수입밀 전분의 구조 및 이화학적 특성 비교)

  • Jeong, Gyeong A;Park, Jinhee;Kim, Kyeong Hoon;Lee, Chang Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.521-526
    • /
    • 2021
  • This study characterized the chemical structure and physical properties of domestic commercial wheat starch and compared them with those of imported commercial wheat starch. Three varieties of domestic commercial wheat starch (DWS) were compared to three types of imported wheat starch (IWS). The morphology of DWS granules was spherical with diameters 17.0-18.3 ㎛; the IWS granules exhibited various diameter sizes (16.6-17.7 ㎛). The amylose content of both DWS and IWS was between 23.2-23.8%. DWS exhibited smaller gelatinization temperature ranges and gelatinization enthalpies compared to IWS. These results suggest that IWS-PW (plain wheat starch) is a mixture of many types of wheat starch. In conclusion, the quality of domestic wheat flour and imported wheat flour was related to gluten content as well as to the starch properties.

Textural Properties and Structures of Wheat and Maize Starch-Gum Mixed Gels During Storage

  • Song, Ji-Young;Kim, Young-Chang;Shin, Mal-Shick
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Effects of commercial and lab-generated gellan gums on the textural properties, structure, and aging of wheat and maize starch gels were investigated using a rapid visco-analyzer (RVA), rheometer, scanning electron microscope (SEM), and X-ray diffractometer. Gellan and guar gums increased the peak and final viscosities, but xanthan gum and gum arabic reduced them. The maize starch had higher breakdown viscosity than the wheat starch, regardless of the type of gum. The hardness of all starch gels increased during storage, but their cohesiveness and springiness decreased. The degree of the gel hardness showed higher in maize starch than in wheat starch and the effect of gum addition had a difference with gum type. The wheat starch-guar and -gellan gum mixed gels showed higher elasticity and cohesiveness after storage. The starch-gellan gum mixed gels had dense and stable network structures, and were well maintained even after 7 days of storage. Most of the gums had anti-aging effect on X-ray diffraction pattern of starch gels.

Characteristics of Starch Paste for Conservation of Paper Properties (Part 1) - The Nature and Adhesive Strength of Starch Paste - (지류 문화재 보존처리용 전분계 풀의 특성 (제1보) - 전분의 종류에 따른 접착 특성 -)

  • Yang, Eun-Jung;Cho, Kyoung-Sil;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.52-64
    • /
    • 2013
  • This study was carried out to investigate the characteristics of starch paste which was used for the conservation of paper properties. Three kinds of commercial corn starch and five kinds of fermented wheat starch were examined on the contents of amylose and amylopectin, shapes of particles, and viscosity and pH of paste. And adhesive strength on the drying, accelerated aging, and wetting treatments were measured. The contents of amylopectin of oxidized corn starch were higher those of cationic corn starch, unmodified corn starch, and fermented wheat flour. In case of fermented wheat flour, increasing of a fermentation period was resulted in increasing of amylopectin contents. The particle shapes of commercial corn starch showed with a uniform polygon, but fermented wheat flour showed with a mixture of small and large oval types. The viscosity of oxidized corn starch were very lower those of cationic corn starch and unmodified corn starch. And increasing of a fermentation period of wheat flour was resulted in increasing of viscosity. The pH of commercial corn starch were 3.6-7.5 and fermented wheat flour were 3.6-5.2. Through the examination on the nature and adhesive strength of starch paste, the oxidized corn starch 60 cps which is the name of products and wheat flour which had fermented for 5 years were considered that most suitable for conservation of paper properties.

A Study on the Quality of Ramyon Made from Korean Wheat and Arrowroot(Pueraria thunbergiana B) Starch (칡전분과 한국산밀로 만든 라면의 품질연구)

  • Hwang, Eun-Hee;Kim, Kee-Hwan
    • Korean Journal of Human Ecology
    • /
    • v.17 no.1
    • /
    • pp.151-158
    • /
    • 2008
  • This study examines the cooking quality, rheology, and sensory characteristics of ramyon noodles made from Korean wheat and arrowroot starch. The control was made from Australian standard wheat(ASW) and the sample was made from Korean wheat. The ratios of arrowwood starch in the sample group were 0%, 5%, 10%, 15%, 20%, 25%, and 30% respectively, and the result was as follows: the yield of the arrowwood starch was 18.8% and moisture level was 14.2%. The lightness(L), redness(a), and yellowness(b) of ASW were 92.07, 1.44, 10.22 respectively, whereas those of Korean wheat were 92.05, 1.55, 11.01, which means the two kinds of wheat showed very little difference in lightness, but Korean wheat had higher degrees of a and b than ASW. The color value of arrowroot starch is L 72.65, a 3.44, b 12.92, so it has a lower degree of lightness and higher degrees of a and b than two kinds of wheat. Dried ramyon displayed a lower degree of lightness and higher degrees of a and b than cooked ramyon, but the first decreased and a increased as we increased the ratio of arrowroot starch in it. The weight of dried ramyon did not show a significant difference among the groups. On the other hand, the weight, volume, water absorption, and the turbidity of cooked ramyon increased as we increased the amount of arrowroot starch in it. The maximum weight, solidity, and elasticity of the control group were greater than those of ramyon made from Korean wheat, but its brittleness was lower. The two groups showed the same degrees of hardness, adhesiveness, and cohesiveness. The maximum weight, solidity, and adhesiveness of the control group increased as we increased the amount of arrowroot starch in it, and the hardness and brittleness were great when the ratio of arrowroot starch was 20%; elasticity was greatest when the ratio of arrowroot starch was 15, 20, and 25%; its adhesiveness and cohesiveness did not depend on the amount of arrowroot starch in it. In the sensory characteristics evaluation, the items that showed significant differences include: appearance (p<0.01), color(p<0.01), smell(p<0.001), transparency(p<0.05), and overall acceptability(p<0.05). The ramyon earned the highest score in appearance when the ratios of arrowroot starch were 5%, 15%, and 20%. As for color and smell, it earned the highest score when it contained 20 and 25% of arrowroot starch. The transparency decreased as we increased the amount of arrowroot starch, and overall acceptability was highest when the ratio of arrowroot starch was 15%. There was a significant difference in overall acceptability between the control and the sample group. As for the loosing speed and chewiness, there was no significant difference between the two groups. When we look at the result of various tests to evaluate the cooking quality, rheology, and sensory characteristics of ramyon noodles, ramyons that contained 15 to 25% of arrowroot starch earned the high scores, and of these the one with 20% of arrowroot starch earned the highest score on all accounts.

Effect of Starches on Texture and Sensory Properties of Frozen Noodle (전분 첨가 냉동면의 조직감과 관능적 특성)

  • 홍희도;김경탁;김정상;김성수;석호문
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.424-429
    • /
    • 1996
  • In an attempt to evaluate the effect of six starch sources-potato starch acetate, corn starch acetate, waxy corn starch, corn starch, potato starch, and wheat starch on properties of frozen noodle, amylograph characteristics of starch-wheat flour composites, cooking quality, maximum cutting force and sensory properties of cooked frozen noodles were examined. Compared with 100% wheat flour as control, potato starch acetate and potato starch-wheat flour composites had slightly lower initial pasting temperature and wheat flour composites with acetylated starches, waxy corn starch and potato starch had slightly higher maximum peak viscosity. At cooking quality examination of noodles made from wheat flour-starch composites, volume and weight of cooked noodles were increased and cook loss was decreased with the addition of acetylated starches and waxy corn starch. Maximum cutting forces of cooked frozen noodles containing more than 15% of potato starch acetate and only 15% of corn starch acetate were higher than that of control. Other starches except potato starch improved sensory properties of cooked frozen noodles and the greatest positive effect was acetated potato starch.

  • PDF

Evaluation of Wheat Gluten and Modified Starches for Their Texture-modifying and Freeze -thaw Stabilizing Effects on Surimi Based-products

  • Chung, Kang-Hyun;Lee, Chong-Min
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.2
    • /
    • pp.190-195
    • /
    • 1996
  • Texture-modifying and freeze-thaw stabilizing effects of different wheat gluten and modified starches on surimi based-product were evaluated. The different incorporation manners of wheat gluten and modified wheat starch in surimi gel were also examined to evaluate their effects of textural properties on surimi gel. The addition of wheat gluten reduced the gel strength of surimi, but after freeze-thaw cycle it significantly improved freeze-thaw stability by reducing freexe-thaw expressible moisture and also by preventing rubbery texture development, Gluten-1 incorporated surimi gel showed higher functionality in forming cohesive gel determined by compressive and penetration force as wall as expressible moisture after freeze-thaw cycle. Surimi gel containing modified wheat starch showed better freeze-thaw stability that of modified potato starch. When a preblended mixture of wheat gluten and starch are incorporated into surimi gel, it made gel texture significantly softer as so in high sensory score. The compertition for moisture between gluten and starch is a main reason to show different way of textural modification.

  • PDF

Wheat Quality and Its Effect on Bread Staling

  • Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.153-161
    • /
    • 2012
  • Wheat is a very popular crop in all over the world due to the various use of wheat flour as staple foods, such as bread. As many food products are made from wheat, the property of wheat can be a determinant of the quality of final food products. Staled bread is not harmful to health but is normally rejected by consumers due to the absence of desirable sensory attributes. The phenomena of staling can be increased hardness of bread, the migration of moisture from center of bread to the crust of bread, loss of flavor and etc. The exact mechanism of staling has not been established completely. To delay or prevent staling, either addition of anti-staling agent, such as surfactant and enzyme or modification of wheat component, such as wheat starch has been adapted. The development of waxy wheat made it possible to reconstitute the starch component in bread. When the content of amylopect in was increased in bread, the loss of moisture was decreased and the reduction in softness of bread was decreased during storage. Increased retrogradation of starch did not always accompany the staling of bread indicating that the retrogradation of starch may not be a single indicator of bread staling. To find out the exact relationship between bread staling and starch retrogradation, further research is necessary.

The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

  • Ball, M.E.E.;Owens, B.;McCracken, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG), in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI), live weight gain (LWG) and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME), ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05) affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F) wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F) wheats. An increase (p<0.1) of 9.3% in gain:feed was also observed at the low seed rate of 40 compared to 640 seeds/$m^2$. It was concluded that the type of wheat sample and environmental growing conditions significantly affects bird performance when fed wheat-based diets.

Flour Quality Characteristics of Korean Waxy Wheat Lines

  • Hong, Byung-Hee;Park, Chul-Soo;Baik, Byung-Kee;Ha, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.360-366
    • /
    • 2001
  • Flour physicochemical properties of six Korean waxy wheat lines and their parental plants, including Kanto 107 and BaiHuo, which have partially null in GBSS (granule bound starch synthase), were evaluated in this study. The very low amylose content (3.20%) of Korean waxy wheat lines, which had been influenced by the null in all three GBSS isoforms encoded by three Wx loci, could result in the higher starch swelling power (25.15%), lower starch and flour pasting temperature (61.37$^{\circ}C$; 65.85$^{\circ}C$), and higher starch pasting peak viscosity and breakdown (246.60 RVU; 161.50 RVU) than those of their parental plants. In addition to high swelling and pasting properties, Korean waxy wheat lines had the higher protein content (12.80%), alkaline water retention capacity (97.39%), SDS sedimentation volume (80.33 $m\ell$) and damaged starch content (4.35 %) than those of their parental plants.

  • PDF

Effects of Transglutaminase on the Physical Properties of Resistant Starch-added Wheat Flour Doughs and Baguettes

  • An, Young-Hyun;Gang, Dong-Oh;Shin, Mal-Shick
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.608-613
    • /
    • 2005
  • Effects of transglutaminase (TG) on physicochemical properties of dough prepared with 20% resistant starch (RS)-added wheat flour were investigated. RS levels of wheat flours added with native wheat starch (NS), Hi-maize (RS2), retrograded (RS3), and cross-linked (RS4) wheat starches were 2.97, 11.88, 5.79, and 9.09%, respectively. Peak viscosity of NS-added flour was higher, whereas setback was lower, than those added with other resistant starches. TG had no effect on pasting behaviors of RS-added flours. Water absorption ranged from 66.5 to 79.0%, and development time increased with RS addition. TG increased tensile strength of dough after fermentation and bread volume, due to well-developed gluten network resulting from cross-linking facilitated by TG Addition of TG decreased hardness of baguettes, with RS2-added baguette showing lowest value. These results indicate addition of TG enhanced eating quality of RS-added breads.