• Title/Summary/Keyword: gels

Search Result 730, Processing Time 0.022 seconds

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

RGD-Conjugated Chitosan-Pluronic Hydrogels as a Cell Supported Scaffold for Articular Cartilage Regeneration

  • Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Sang-Young;Lee, Myung-Chul
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.517-523
    • /
    • 2008
  • A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGD-CP was characterized by $^1H$ NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was $0.135{\mu}g$ per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a> 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGD-CP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydro gels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.

Identification of Upregulated APOA1 Protein of Chicken Liver in Pullorum Disease (추백리가 감염된 닭의 간에서 발현이 증가하는 APOA1 단백질의 확인)

  • Jung K. C.;Lee Y. J.;Yu S. L.;Lee J. H.;Jang B. K.;Koo Y. B.;So H. K.;Choi K. D.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The aim of this study was to investigate differentially expressed proteins between normal chicken liver and chicken liver inffeted by Salmonella pullorum. 2-dimensional electrophoresis (2DE) and mass spectrometry (MS) were used to identify the proteins. More than 300 protein spots were detected on silver stained 2DE gels using pH 3$\~$10 gradients. The most outstanding protein spot was further analyzed by MALDI-TOF MS and protein database using the Mascot search engine. The protein was finally identified as APOAI (Apolipoprotein AI). Based on the known function of the APOAI, this gene acts protective action against the accumulation of platelet thrombin at the site of vascular damage for the pullorum disease. Therefore APOAI protein, identified in this study, can be a valuable biomarker in relation to the pullorum disease in chicken.

Preparation of Ultra-Low Thermal Expansion L$i_2$O-A$l_2$$O_3$-Si$O_2$ Glass-Ceramics by Sol-gel Technique (졸-겔 방법에 의한 $Li_2O-Al_2O_3-SiO_2$계 저열팽상성 결정화유리의 제조)

  • Yang, Jung-Sik;Kim, Jong-Beom;Yang, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.207-214
    • /
    • 1993
  • Glass-ceramic monoliths with an ultra-low thermal expansion coefficient have been synthesized by the sol-gel technique using metal alkoxides as starting materials and dimethyl formamide as a drying control chemical additive. The ternary gels: $Li_2O\cdot Al_2O_3\cdot 2, 4 or $6SiO_2$ were obtained by hydrolysis and polycondensation reactions of metal alkoxides of silicon, aluminum and lithium. To produce cylindrical crack-free gel monoliths, excess water was used to the starting solutions and drying rates were controlled precisely to prevent cracking. In conversion process ,${\beta}$-eucryptite, $Li_2O\cdot Al_2O_3\cdot 3SiO_2$ and P-spodumene with ,${\beta}$-quartz solid solution phase were obtained by heating at the range of 750 ~$1000^{\circ}C$. Above $800^{\circ}C$, the ,${\beta}$-spodumene phase increased while ,${\beta}$-eucryptite phase decreased. The thermal expansion coefficient of the crystallized specimens were -15~ $+5{\times}{10^{-7}}/{\circ}C$ over the temperature range from room temperature to $600^{\circ}C$.

  • PDF

Effects of Heating Condition and Additives on Rheology of Squid Meat Paste Products (오징어 연제품의 물성에 미치는 가열조건과 첨가제의 영향)

  • 배태진;김해섭;최옥수
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.481-491
    • /
    • 2003
  • A squid meat has not been utilized for gel products because of its lower gel forming ability. The objectives of this study were as followed; 1) the optimum heating condition on squid meat paste products and 2) the optimum added level for jelly strength of squid meat paste products. Optimum heating conditions of squid meat kamaboko were as followed; setting (pre-heating) at 15$^{\circ}C$ or 55$^{\circ}C$ for 2 hours and heating at 90$^{\circ}C$ for 60 minutes. Effect for jelly strength of starch additives wheat starch, potato starch and com starch were examined. The jelly strength of heat induced gels differed from the levels of additives. In case of adding starch, potato starch was resulted in the superior jelly strength than the other starchs, wheat starch and corn starch, at any levels. Optimum concentration was 10%(w/w) at every additives. Folding test value was B at added 10% and this value was mean good product. Data of jumbo and flying squid meat paste products added potato starch, corn starch and wheat starch of 10% were shown below, jelly strengths were 858${\pm}$34∼1020${\pm}$37gㆍcm and 966${\pm}$33∼l148${\pm}$45gㆍcm and moisture contents were 72.43∼73.04% and 71.61∼72.78%, respectively. To adding edible agar and sea tangle, showed the highest jelly strength (edible agar>sea tangle, flying squid>jumbo squid) at added 0.5%(w/w) concentration.

Gelatinization Behaviours and Gel Properties of Hydroxypropylated Corn Starches (하이드록시프로필화 옥수수 전분의 호화 및 겔 특성)

  • Yook, Cheol;Pek, Un-Hua;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.317-324
    • /
    • 1991
  • Gelatinization behaviours and gel properties of hydroxypropylated corn starches (HPCS) were investigated with differential scanning calorimeter, amylograph and rheometer. Gelatinization temperature of HPCS decreased as degree of substitution increased. The retrogradation of corn starch was greatly reduced by hydroxypropylation, indicating that the association of starch molecules was sterically hindered by hydroxypropyl groups. In HPCS, gel was formed slowly and gel strength decreased resulting in soft and sticky texture. Texture profiles of HPCS gels were similar to those of tapioca and waxy corn starch. HPCS has shown a remarkable increase of paste transparency compared to native corn starch.

  • PDF

Comparison of Physicochemical Properties of Corn, Sweet Potato, Potato, Wheat and Mungbean Starches (옥수수, 고구마, 감자, 소맥, 녹두 전분의 이화학적 성질 비교)

  • Jung, Seung-Hyeon;Shin, Gun-Jin;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.272-275
    • /
    • 1991
  • Physicochemical properties of commercial corn, sweet potato, potato, wheat and mungbean starches were investigated. Amylose contents of each starch were 23, 20, 24, 28 and 39%, whereas water binding capacities were 92, 87, 83, 79 and 77%, respectively. Average granule size of potato starch was considerably higher than that of other starches. In terms of color, lightness and whiteness of sweet potato starch were relatively lower than those of other starches. Comparing with other starches, the viscosity of potato starch was the highest level. The results also showed that textural properties of potato and sweet Potato starch gels were similar. Corn starch gel had lower hardness and higher cohesiveness than others.

  • PDF

Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

  • Zhang, Wei;Zhao, Xiaomeng;Shi, Mengya;Yang, Aizhen;Hua, Baoguang;Liu, Yueping
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

Effect of Saccharides on Texture and Retrogradation of Acorn Starch gels (도토리 전분 겔의 텍스쳐와 노화에 미치는 당류의 영향)

  • Lee, Hyang-Aee;Kim, Nam-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.803-810
    • /
    • 1998
  • The mechanical and thermal properties of solutions of acorn starch were investigated, to determine the effect of sucrose on the retrogradation. The contents of moisture and amylose of purified acorn starch was 9.35, 27% respectively. From the moecular weight distribution, Mw and Mn of acorn starch were 1,220,432 and 137,201 relatively and the polydispersity of acorn starch was 8.8952. The creep compliance of acorn starch with and without sucrose were decreased with increasing sucrose concentration in the short term. The temperatures of DSC curve of 15% acorn starch solution containg sucrose shifted slightly to higher temperatures with increasing sucrose content. The enthalpy change associated with the gelatinization was increased with increasing sucrose content. After 7 days storage, the creep compliance of acorn starch gel with sucrose were shown higher than acorn starch gel. Regelatinization enthalpy of acorn starch/sucrose/water system was decreased with increasing sucrose content and increased with storage time. In addition, the characteristic temperatures such as onset temperature, peak temperature and conclusion temperature was increased by sucrose addition. Retrogradation ratio decreased with increasing sucrose content, thus sucrose inhibit retrogradation in the long term. Sucrose acts as an antistaling reagents and retatards the retrogradation.

  • PDF