• Title/Summary/Keyword: gels

Search Result 731, Processing Time 0.024 seconds

Preparation and Characterization of PEG-impregnated Aloe Gel through DIS Processing of Aloe vera Leaf Slice (DIS 공정에 의한 Polyethylene Glycol 함침 알로에 베라 겔의 제조 및 특성화)

  • Kwon, Hye Mi;Hur, Won;Lee, Shin Young
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.356-365
    • /
    • 2013
  • The novel Aloe gels were prepared with dewatering and impregnation by soaking (DIS) processing of Aloe vera leaf slice at four different temperatures (25, 35, 45 and $55^{\circ}C$), using dehydration solution of 40% (w/v) polyethylene glycol (PEG4000). The PEG-impregnation to Aloe vera leaf slice during DIS was observed depending on immersion temperature, and the PEG-impregnated Aloe vera gel (PEG-i-AVG) obtained was characterized using $^1H$ NMR, FT-IR, GPC, XRD and TGA. The PEG-i-AVG had the higher levels of Aloe bioactives (glucomannan and O-acetyl contents) and better quality indices by $^1H$ NMR and FT-IR spectroscopy than those of native Aloe gel. Also, the obtained Aloe gel maintained the bimodal patterns in higher molecular weight region by GPC indicating no degradation of polysaccharide from native Aloe gel. The result observed by SEM confirmed a surface modification by forming the porous structure, and TGA result exhibited better thermal stability than that of native Aloe gel. XRD result revealed that the crystalline structure in Aloe gel was led by incorporation of PEG. Significant decrease of %insolubility and high enhancement of water solubility index were observed, respectively, and highly ordered conformation such as a helix structure was also indicated by Congo red reaction. We concluded that the modification effect for enhancing function of native Aloe gel was successfully obtained by DIS process using PEG as a dehydrating agent. These results suggested that this DIS process had a high potential for developing a new minimally processed product from Aloe vera leaf.

The Characteristics of Vanadium based Composite Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 복합양극의 특성)

  • Kim Jong-Jin;Son Won-Keun;Kim Jae-Yong;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • A new treatment of $LiV_3O_8$ has been proposed for improving its electrochemical behavior as a cathode material for secondary lithium batteries. Lithium trivanadate, $LiV_3O_8$, can be prepared in a finely dispersed form by dehydration of aqueous lithium trivanadate gels. The ultrasonic treatment method for Liv30s has been examined in comparison with $LiV_3O_8$ prepared by solutionmethod. The ultrasonically treated products in water were characterized by XRD (X-ray diffractometry), TGA (thermogravimetric analysis) and SEM (scanning electron microscopy). These measurements showed that the ultrasonic treatment process of aqueous $LiV_3O_8$ caused a decrease in crytallinity and considerable increased in specific surface area and interlayer spacing. The product, ultrasonically treated in water for 2 h, showed a high initial discharge capacity and was charge-discharge cycled without large capacity loss. The ultrasonic treated Liv30s can improve not only the specific capacity, but also the cycling behavior

Development and Evaluation of Fall Impact Protection Pad (낙상충격 보호패드의 개발 및 평가)

  • Park, Jung Hyun;Lee, Jin Suk;Lee, Jeong Ran
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.422-428
    • /
    • 2018
  • In this study, we developed honeycomb pads using foam and polymer gel and verified the impact protection performance of pads for the development of a fall protection pants for elderly women aged 65 and over who have a high risk of fracture due to falls. The results are as follows; In the first experiment, the impact protection performance was evaluated for four honeycomb pad samples (CR foam, EPDM foam, hardness 15 polymer gel, and hardness 30 polymer gel) manufactured to a thickness of 5 mm using a single material. When the force of about 10757N was applied to the specimens, all four pads reduced the impact force to 3100N or less. Polymer gels showed better protection than foam materials. In the second experiment, the thickness of the protective pad was set to 8 mm in order to improve the shock absorbing performance of the protective pad. As a result of evaluating the impact protection performance of the foam single pad and foam gel composite pad, the impact absorbing performance of the foam single pad was better. Finally, four kinds of protection pads were made by assigning the foam single pad and the foam gel composite pad to pants type and underwear type respectively. The pad thickness of the main protection area was set to 8 mm to enhance the protection, and gradually decreased to 5mm and 3mm toward the edge to improve the appearance and fit.

Determining an Effective Electrophoretic Gel System for Separation of the Circular and Linear Potato Spindle Tuber Viroid RNA Molecules (환상 및 선상감자 걀쪽바이로이드 RNA분자의 전기영동적 분리를 위한 효과적인 조건에 관한 연구)

  • Lee Jai Youl;Kim Han Jip
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.239-244
    • /
    • 1987
  • Low molecular weight plant ribonucleic acids including potato spindle tuber viroid(PSTV) RNA were electrophoresed in 0M to 8M urea-gradient polyacrylamide gels. The electrophoresis was carried on in a urea - gradient gel system with 1/40 and 1/10 dilution of TBE buffer at three different temperatures, $17^{\circ}C,\;37^{\circ}C\;and\;57^{\circ}C$. The most effective separation of PSTV - RNA molecules into circular and linear forms was achieved at the highly denaturing temperature of $57^{\circ}C$ and at 1/40 dilution of TBE buffer. The electrophoretic mobility of the denatured circular viroid-RNA molecules is dependent mainly on the concentration of urea. In addition, a low concentration of TBE buffer would increase the separation distance between the circular and linear forms of PSTV-RNA molecules in the denaturing urea-gradient gel system

  • PDF

Proteomics-based Identification of Components in the Adventitious Roots of Panax Ginseng C. A. Mayer related to Energy Metabolism and Antibiotic Effects (단백체학을 이용한 인삼의 에너지대사 및 항생효과 관련 성분에 대한 연구)

  • Cho, Jin-Hyoung;Jeon, Young-Joo;Lee, Ra-Ham;Shim, Jung-Hyun;Chae, Jung-Il
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.167-182
    • /
    • 2014
  • Korean Panax ginseng C. A. Meyer (P. ginseng) is a well-known and one of the most important tonic herbs used in traditional Korean medicine. The pharmacological effects of P. ginseng have been reported by many researchers. Nevertheless, little is known between the mechanism of action and the active compounds. In this study, we performed a comprehensive proteomic analysis and protein categorization in order to understand the physiological characteristics of the major components in the adventitious roots of P. ginseng. Whole proteins extracted from the cultured adventitious roots of P. ginseng were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). Among the 1000 spots which were detected by silver staining, 113 spots were labeled and identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). Our results showed that 40 proteins were identified among the 113 spots, with a hit ratio of 35.3%. A number of proteins identified on the 2-DE gels (30%; 16 spots) were involved in energy metabolism. These proteomic data will be helpful to better understand the physiological and pharmacological effects of P. ginseng.

An efficient and reliable electroelution method from SDS-PAGE: Identification of a 31 kDa protein in the postsynaptic density fraction as adenine nucleotide translocator 1 (SDS-겔로부터 효율적인 단백질 분리방법과 31 kDa 연접후치밀질 단백질의 동정)

  • Jung, Jae-Seob;Cho, Sun-Jung;Shin, Seung-Chul;Jin, Ing-Nyol;Jung, Yong-Wook;Ko, Bok-Hyun;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.555-560
    • /
    • 2002
  • The molecular composition of the postsynaptic density (PSD) is largely hon. In this report, an electroelution protocol was demonstrated to be used for efficient isolation of PSD proteins with diverse molecular sizes. Using this protocol, a 31 kDa protein in the 1% n-octyl glucoside-insoluble PSD fraction (termed as PSD31) was purified from SDS-gels, and internal peptides were determined for amino acid sequences. The amino acid sequences of the PSD31 were highly homologous with the adenine nucleotide translocator 1 (ANTI). The association of ANTl with PSD suggests presence of a mechanism in synapses for releasing adenosine nucleotides into the extracellular space.

Gene Frequencies and Phenotypes of Transferrin C Subtypes and Haptoglobin in Korean Population (한국인집단의 Transferrin C Subtypes와 Haptoglogin Phenotypes의 분포와 유전자 빈도)

  • 이정주;오문유
    • The Korean Journal of Zoology
    • /
    • v.26 no.3
    • /
    • pp.211-217
    • /
    • 1983
  • Genetic polymorphism of transferrin $(T_f)$ subtypes in Jeju population was studied by isoelectric focusing of human sera on polyacrylamide gels under high voltage, and haptolobin (Hp) polymorphism in Seoul and Jeju population was studied by polyacrylamide gel electrophoresis. Among 946 normal samples, three common types of transferrin, $T_{f}C_{1}, T_{f}C_{1}-C_{2} and T_{f}C_{2}$ were observed with some variants migrating slower than $T_{f}C$ subtypes, while among 139 patient (hepatitis) samples, only three common types were found. The gene frequencies were calculated as follows; in normal population, $T_{f}C^{1}$ was 0.7220; $T_{f}C^{2}, 0.2743; T_{f}D^{Jeju}, 0.0037$, and in patient population, $T_{f}C^{1} was 0.7194; T_{f}C^{2}, 0.2806$ respectively. Among 460 samples in Seoul and 502 in Jeju population, three types of haptoglobin, Hp 1-1, Hp 2-1 and Hp 2-2 were observed. The gene frequency of $Hp^1$ was 0.304, $Hp^2$, 0.696 in Seoul and in Jeju, $Hp^1$ was 0.269 and $Hp^2$, 0.731, respectively. The frequencies of the genes and the polymorphic phenotypes were discussed comparatively with the other populations.

  • PDF

Proteome analysis of roots of sorghum under copper stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.130-130
    • /
    • 2017
  • Sorghum bicolor is considered as copper-tolerant species. The present study was conducted to understand the copper tolerance mechanism in Sorghum seedling roots. Morphological and effects of Cu on other interacting ions were observed prominently in the roots when the plants were subjected to different concentrations (0, 50, and $100{\mu}M$) of $CuSO_4$. However, the morphological characteristics were reduced by Cu stress, and the most significant growth inhibition was observed in plants treated with the highest concentration of $Cu^{2+}$ ions ($100{\mu}M$). In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis coupled with MALDI-TOF-TOF mass spectrometry was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, a total of 422 differentially expressed proteins (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. A total of 21 protein spots (${\geq}1.5-fold$) from Cu-induced sorghum roots were analyzed by mass spectrometry. Of the 21 differentially expressed protein spots from Cu-induced sorghum roots, a total of 10 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of the most identified protein species from the roots that function in stress response and metabolism was significantly enhanced, while protein species involved in transcription and regulation were severely reduced. The results obtained from the present study may provide insights into the tolerance mechanism of seedling roots in Sorghum.

  • PDF

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Proteome characterization of hormone-induced diploid and tetraploid roots of Platycodon grandiflorum

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Song, Beom-Heon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.132-132
    • /
    • 2017
  • Plants, including Platycodon grandiflorum have been used globally across varied cultures as a safe natural source of medicines. From time immemorial, humans have relied on plants that could meet their basic necessities such as food, shelter, fuel and health. This study was executed to profile proteins from the hormone induced diploid and tetraploid roots using high throughput proteome approach. Two dimensional gels stained with CBB, a total of 64 differential expressed proteins were identified from the diploid root using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 20 differential expressed protein spots ( ${\geq}1.5-fold$) were analyzed using LTQ-FTICR MS whereas a total of 13 protein spots were up regulated and 7 protein spots were down-regulated. However, in the case of tetraploid root, a total of 78 differential expressed proteins were identified from tetraploid root of which a total of 28 differential expressed protein spots (${\geq}1.5-fold$) were analyzed by mass spectrometry whereas a total of 16 protein spots were up regulated and a total of 12 protein spots were down-regulated. However, proteins identified using iProClass databases revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase activity, transporter activity and isomers activity. The exclusive protein profile may provide insight clues for better understanding the characteristics of protein function and its metabolic activity that can help for the development of the nutritional and breeding aspects of this economically important medicinal plant.

  • PDF