DOI QR코드

DOI QR Code

Proteomics-based Identification of Components in the Adventitious Roots of Panax Ginseng C. A. Mayer related to Energy Metabolism and Antibiotic Effects

단백체학을 이용한 인삼의 에너지대사 및 항생효과 관련 성분에 대한 연구

  • Cho, Jin-Hyoung (Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience) ;
  • Jeon, Young-Joo (Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience) ;
  • Lee, Ra-Ham (Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience) ;
  • Shim, Jung-Hyun (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Chae, Jung-Il (Department of Oral Pharmacology, School of Dentistry and Institute of Dental)
  • Received : 2013.12.27
  • Accepted : 2014.01.16
  • Published : 2014.03.30

Abstract

Korean Panax ginseng C. A. Meyer (P. ginseng) is a well-known and one of the most important tonic herbs used in traditional Korean medicine. The pharmacological effects of P. ginseng have been reported by many researchers. Nevertheless, little is known between the mechanism of action and the active compounds. In this study, we performed a comprehensive proteomic analysis and protein categorization in order to understand the physiological characteristics of the major components in the adventitious roots of P. ginseng. Whole proteins extracted from the cultured adventitious roots of P. ginseng were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). Among the 1000 spots which were detected by silver staining, 113 spots were labeled and identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). Our results showed that 40 proteins were identified among the 113 spots, with a hit ratio of 35.3%. A number of proteins identified on the 2-DE gels (30%; 16 spots) were involved in energy metabolism. These proteomic data will be helpful to better understand the physiological and pharmacological effects of P. ginseng.

Keywords

References

  1. Attele, A. S., J. A. Wu, C. S. Yuan. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 58(11): 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  2. Bowler, M. W., M. G. Montgomery, A. G. Leslie, and J. E. Walker. 2006. How azide inhibits ATP hydrolysis by the F-ATPases. Proc Natl Acad Sci U S A. 103(23): 8646-8649. https://doi.org/10.1073/pnas.0602915103
  3. Gorg, A., C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber, and W. Weiss. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21(6): 1037-1053. https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V
  4. Hartl, F. U. and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 295(5561): 1852-1858. https://doi.org/10.1126/science.1068408
  5. Hochstrasser, D. F., J. C. Sanchez, and R. D. Appel. 2002. Proteomics and its trends facing nature's complexity. Proteomics. 2(7): 807-812. https://doi.org/10.1002/1615-9861(200207)2:7<807::AID-PROT807>3.0.CO;2-4
  6. Hong, C. P., S. J. Lee, J. Y. Park, P. Plaha, Y. S. Park, Y. K. Lee, J. E. Choi, K. Y. Kim, J. H. Lee, J. Lee, H. Jin, S. R. Choi, and Y. P. 2004. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics. 271(6): 709-716.
  7. Huang, K. C. and W. M. Williams. 1999. The pharmacology of Chinese herbs. 2nd edn. CRC Press, Boca Raton.
  8. Hudson, G. S., J. G. Mason, T. A. Holton, B. Koller, G. B. Cox, P. R. Whitfeld, and W. Bottomley. 1987. A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol. 196(2): 283-298. https://doi.org/10.1016/0022-2836(87)90690-5
  9. Jun, H. and S. Kim. 1982. Studies on the physiological activity of korean ginseng (part 3) The effects of ginseng saponin on the antimicrobial activity and drug-resistance of antibiotics in bacteria. Korean Journal of Applied Microbiology and Bioengineering. 10.
  10. Kim, S. I., J. Y. Kim, E. A. Kim, K. H. Kwon, K. W. Kim, K. Cho, J. H. Lee, M. H. Nam, D. C. Yang, J. S. Yoo, and Y. M. Park. 2003. Proteome analysis of hairy root from Panax ginseng C.A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics. 3(12): 2379-2392. https://doi.org/10.1002/pmic.200300619
  11. Kim, S. I., S. M. Kweon, E. A. Kim, J. Y. Kim, S. Kim, J. S. Yoo, and Y. M. Park. 2004. Characterization of RNase-like major storage protein from the ginseng root by proteomic approach. J Plant Physiol. 161(7): 837-845. https://doi.org/10.1016/j.jplph.2004.01.001
  12. Li, C. H., N. Yu, S. M. Jiang, X. X. Shangguan, L. J. Wang, and X. Y. Chen. 2008. Downregulation of S-adenosyl-L: -homocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions. Planta. 228(1): 125-136. https://doi.org/10.1007/s00425-008-0724-2
  13. Lu, G. T., J. R. Xie, L. Chen, J. R. Hu, S. Q. An, H. Z. Su, J. X. Feng, Y. Q. He, B. L. Jiang, D. J. Tang, and J. L. Tang. 2009. Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence. Microbiology. 155 Pt 5: 1602-1612. https://doi.org/10.1099/mic.0.023762-0
  14. Lum, J. H., K. L. Fung, P. Y. Cheung, M. S. Wong, C. H. Lee, F. S. Kwok, M. C. Leung, P. K. Hui, and S. C. Lo. 2002. Proteome of Oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool. Proteomics. 2(9): 1123-1130. https://doi.org/10.1002/1615-9861(200209)2:9<1123::AID-PROT1123>3.0.CO;2-S
  15. Marques, K., B. Sarazin, L. Chane-Favre, M. Zivy, and H. Thiellemen. 2001. Comparative proteomics to establish genetic relationships in the Brassicaceae family. Proteomics. 1(11): 1457-1462. https://doi.org/10.1002/1615-9861(200111)1:11<1457::AID-PROT1457>3.0.CO;2-W
  16. Miki, J., M. Maeda, Y. Mukohata, and M. Futai. 1988. The gamma-subunit of ATP synthase from spinach chloroplasts. Primary structure deduced from the cloned cDNA sequence. FEBS Lett. 232 1:221-226.
  17. Morikami, A., G. Ehara, K. Yuuki, and K. Nakamura. 1993. Molecular cloning and characterization of cDNAs for the gamma- and epsilon-subunits of mitochondrial F1F0 ATP synthase from the sweet potato. J Biol Chem. 268(23): 17205-17210.
  18. Nakamura, K., K. Rokutan, N. Marui, A. Aoike, and K. Kawai. 1991. Induction of heat shock proteins and their implication in protection against ethanol-induced damage in cultured guinea pig gastric mucosal cells. Gastroenterology. 101(1): 161-166. https://doi.org/10.1016/0016-5085(91)90473-X
  19. Nam, M. H., S. I. Kim, J. R. Liu, D. C. Yang, Y. P. Lim, K. H. Kwon, J. S. Yoo, and Y. M. Park. 2005. Proteomic analysis of Korean ginseng (Panax ginseng C. A. Meyer). J Chromatogr B Analyt Technol Biomed Life Sci. 815(1-2): 147-155. https://doi.org/10.1016/j.jchromb.2004.10.063
  20. O'Neill, E. E., C. J. Brock, A. F. von Kriegsheim, A. C. Pearce, R. A. Dwek, S. P. Watson, and H. F. Hebestreit. 2002. Towards complete analysis of the platelet proteome. Proteomics. 2(3): 288-305. https://doi.org/10.1002/1615-9861(200203)2:3<288::AID-PROT288>3.0.CO;2-0
  21. Popova, T. N. and M. A. Pinheiro de Carvalho. 1998. Citrate and isocitrate in plant meta bolism. Biochim Biophys Acta. 1364(3): 307-325. https://doi.org/10.1016/S0005-2728(98)00008-5
  22. Ranford, J. C. and B. Henderson. 2002. Chaperonins in disease: mechanisms, models, and treatments. Mol Pathol. 55(4): 209-213. https://doi.org/10.1136/mp.55.4.209
  23. Reed, T. T., W. M. Pierce, W. R. Markesbery, and D. A. Butterfield. 2009. Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD. Brain Res. 1274: 66-76. https://doi.org/10.1016/j.brainres.2009.04.009
  24. Thiellement, H., N. Bahrman, C. Damerval, C. Plomion, M. Rossignol, V. Santoni, D. de Vienne, and M. Zivy. 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis. 20(10): 2013-2026. https://doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2013::AID-ELPS2013>3.0.CO;2-#
  25. Vallet, J. L., R. K. Christenson, and W. J. McGuire. 1996. Association between uteroferrin, retinol-binding protein, and transferrin within the uterine and conceptus compartments during pregnancy in swine. Biol Reprod. 55(5): 1172-1178. https://doi.org/10.1095/biolreprod55.5.1172
  26. Vogler, B. K., M. H. Pittler, and E. Ernst. 1999. The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol. 55(8): 567-575. https://doi.org/10.1007/s002280050674
  27. Yeo, M., D. K. Kim, S. W. Cho, and H. D. Hong. 2008. Ginseng, the root of Panax ginseng C. A. Meyer, protects ethanol-induced gastric damages in rat through the induction of cytoprotective heat-shock protein 27. Dig Dis Sci. 53(3): 606-613. https://doi.org/10.1007/s10620-007-9946-6
  28. Yun, T. K. 2001. Brief introduction of Panax ginseng C. A. Meyer. J Korean Med Sci. 16 Suppl: S3-5. https://doi.org/10.3346/jkms.2001.16.S.S3
  29. Zurawski, G., W. Bottomley, and P. R. Whitfeld. 1982. Structures of the genes for the beta and epsilon subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA. 79(20): 6260-6264. https://doi.org/10.1073/pnas.79.20.6260