• Title/Summary/Keyword: gelatinization of starch

Search Result 334, Processing Time 0.021 seconds

Effects of Low-Dose Gamma Irradiation on Physicochemical Properties and Formation of Resistant Starch of Corn Starch (저선량 감마선 조사가 옥수수 녹말의 이화학 성질 및 저항전분 생성에 미치는 영향)

  • Kim, Sung-Kon;Kim, Jeong-Hee;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.378-384
    • /
    • 2006
  • Intrinsic viscosity of starch irradiated with Co-60 (0.25-9.1 kGy) significantly decreased, and swelling power and solubility measured at $80^{\circ}C$ linearly increased with increasing irradiated dose. Radiation treatment up to 1 kGy increased amylose content of starch. Water-binding capacity increased rapidly up to 3 kGy. Peak viscosity of irradiated starches by Rapid visco Analyser and Visco/amylo/Graph indicated that the decrease in peak viscosity was dose-dependent. Gamma irradiation showed no effect on endothermic temperatures of irradiated starches, but decreased endothermic enthalpy with increasing dose level. Viscosity of starch autoclaved at $120^{\circ}C$ and air-dried significantly decreased with increasing irradiation dose. Resistant starch content slightly decreased upon irradiation.

A Study on Texture of Jeung-pyun According the Kinds of Rice (쌀 품종에 따른 증편의 조직특성에 관한 연구)

  • 김효진;이숙미;조정순
    • Korean journal of food and cookery science
    • /
    • v.13 no.1
    • /
    • pp.7-15
    • /
    • 1997
  • The composition and polymeric structure of starch are the most important factors to determine the functional properties of rice. In an effort to relate the structural characteristics and its functional properties of starch in rice, molecular structural properties of starch from 6 rice cultivars were analysed. To relate the structure and function of starch the texture of Jeung-pyun made of rice were analyzed during retrogradation. The polymeric structure of rice starch was analyzed by debranching with isoamylase after gelatinization and fractionated with Sephadex G-75 gel filteration. The size fractionated debranched starch was categorized into four groups such as Fraction I, II, III and Intermediate Fraction depending in their max, The fractions with the max higher than 620 nm were designated as Fraction I, while those in the range of 600-620 nm and 540-600 nm as the Intermediate Fraction and Fraction II, respectively. The Fractions with the max lower than 540 were described as Fraction III. The average degree of polymerization (DP) of the Fraction I was estimated to be higher than 200, and those of other fractions, i.e. the Intermediate Fraction I, Fraction II and III were 150,45 and 25, respectively. The levels of Fraction I were varied from II to 35% of total sugar. The Fraction I showed the linear relationship with the amylse contents, and the Intermediate Fraction, which might contain the mixture of short chain of amylose and debranched long chain of amylopectin, were measured to be in the range of 2.7∼8.4%. The levels of fraction II and III, both to be considered as the branches of amylopectin, were ranged 14.5∼23.6% and 39.7∼73.0%, respectively. The ratio of Fraction III to Fraction II describing the degree of branch or compactness of amylopectin was estimated to be around 4.0 for waxy varieties and around 2.0 for high amylose cultivars. With these results, it can be suggested that the degree of branch of the amylopectin may effect on amylose contents of starch or rice versa, To invertigate processing aptitude of different rice cultivars for the preparation of Jeung-pyun, its texture was analyzed by Instron, hardness, cohesiveness, elasticity, gumminess and chewiness of Jeung-pyun made of rice showed the significant relationship with the amylose content. Hardness was increased during retrogradation of product, but the relationship between hardness and amylose content due to not only difference in amylose content but also difference in structural characteristics of starch. In analysis of relationship between structure of rice starch and mechanical properties of Jeung-pyun during retrogradation elasticity did not show any relationship before retrogradation bur during retrogradation showed significant correlation. With these result, it can be suggested that the degree of branch of the amylopectin may effect on elasticity during retrogradation. However hardness, cohesiveness, gumminess and chewiness which were significant different before retrogradation, showed some correlation with structure of rice starch during retrigradation.

  • PDF

Effects of Moisture Content on Recrystallization of Rice Starch Gels (쌀전분겔의 재결정화에 미치는 수분함량의 영향)

  • Baik, Moo-Yeol;Kim, Kwang-Joong;Cheon, Ki-Cheol;Ha, Yeon-Chul;Kim, Wang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.939-946
    • /
    • 1997
  • Effects of moisture content on the gelatinization and recrystallization of non-waxy and waxy rice starch gels were investigated by differential scanning calorimetry (DSC). The recrystallization rates of the starch gels containing various moisture contents $(40{\sim}70%)$ were analyzed by Avrami equation. The waxy rice starch had higher gelatinization temperature and enthalpy than non-waxy one. The highest degrees of recrystallization in both rice starch gels stored at $4^{\circ}C$ were shown at 40%, and recrystallizations above 80% moisture content were not found. The degree of recrystallization of waxy one was higher than that of non-waxy one in the range of 40 to 60% moisture content. The Avrami exponents (n) of both rice starch gels were near to 1.0 and the time constant (1/k) was increased with increasing moisture content in the range of 40 to 70% moisture content. The recrystallization rate of waxy rice starch gel was slower than that of non-waxy one. The recrystallization of rice starch gels could be explained by the change of ice melting enthalpy during storage. The Wg's, represented the maximum practical amount of plasticizing water, were about 29.9% and 28.2% for non-waxy and waxy rice starch gels, respectively.

  • PDF

Determining the Optimal Recipe for Long-Grain Jasmine Rice with Sea Tangle Laminaria japonica, and Its Effect on the Glycemic Index

  • Zeng, Jiting;Choi, Nam-Do;Ryu, Hong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • Thai Jasmine rice (Oryza sativa, long grain Indica var.) is popular in southeastern Asia and China due to its non-glutinous, fluffy texture and fragrant smell. However it has a high starch digestibility, which leads to an increased glycemic index (GI). Therefore it may require modified cooking methods for diabetes patients. The objectives of this study were to optimize the ratio of Thai Jasmine rice, sea tangle, and olive oil (CLTR) based on consumers' acceptance. The GI of plain cooked Thai Jasmine rice (CLR) was measured as a control. Sensory evaluation and response surface methodology were used to determine the optimal ratio. Texture analysis and nutritional evaluation were also performed on the optimal recipe of cooked Jasmine rice with sea tangle. A multiple regression equation was developed in quadratic canonical polynomial models. We used 26 trained Chinese panelists in their forties to rate color, flavor, adhesiveness, and glossiness, which we determined were highly correlated with overall acceptability. The optimal CLTR formula was 34.8% rice, 2.8% sea tangle, 61.9% water, and 0.5% olive oil. Compared to CLR, CLTR had a lower hardness, but a higher springiness and cohesiveness. However, CLR and CLTR had the same adhesiveness and chewiness. The addition of sea tangle and olive oil delayed retro-gradation of starch in CLTR and increased total dietary fiber, and protein and ash contents. The degree of gelatinization, and in vitro protein and starch digestibility of CLTR were lower than those of CLR. Based on Wolver' method, the GI of CLTR (52.9, incremental area under the glycemic-response curve, ignoring the area below fasting, as used for calculating the GI [Inc]) was lower compared with that of CLR (70.94, Inc), which indicates that CLTR is effective in decreasing and stabilizing blood glucose level, owing to its lower degree of gelatinization and starch digestibility. Our results show that CLTR can contribute to the development of a healthier meal for families and the fast food industry.

Study on Rheological and Phermal Properties of Dioiscorea batatas DECAISNE Starch (마(Dioscorea batatas DECAISNE)전분의 Rheology 및 열적 특성에 관한 연구)

  • 최일숙;이임선;구성자
    • Korean journal of food and cookery science
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 1992
  • The purpose of this study was to investigate the rheological and thermal properties of yam starch. Yam starch had a hydrodynamic volume with the intrinsic viscosity,[$\eta$], of 0.29dl/g deionized water. The values of the intrinsic viscosity of yam starch, determined to pH 2-11, varied between 0.07 to 0.18 dl/g. The highest intrinsic viscosity was obtained at pH 7. At salt concentrations 0-0.2 M NaCl, the intrinsic viscosity of yam starch was decreased up to 0.05 M NaCl concentration then increased to 0.07 M NaCl concentration and remained constant to reach 0.2 M NaCl concentration. The overlap parameter, calculated with the intrinsic vicosity data, was 3.45 g/dl in deionized water. The thermal properties of yam starch were investigated by Differential Scanning Calorimetry. Three endotherms were observed both pH solution and salt concentation. In the presence of pH 9, the onset temperature of gelatinization peak was the lowest temperature of 50.$32^{\circ}C$ and the enthalpy ($\Delta$H) was increased in this solution. The effect of salt on the thermal properties of yam starch was determined at salt concetration of 0-0.2 M NaCl. The enthalpy significantly decreased to salt concentration 0.07 M NaCl and the lowest onset temperature of this concentration was 52.$90^{\circ}C$.

  • PDF

Physicochemical Properties of Buckwheat Starch (메밀 전분의 이화학적 성질에 관한 연구)

  • Kim, S.K.;Hahn, T.R.;Kwon, T.W.;D'Appolonia, B.L.
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.138-143
    • /
    • 1977
  • Physicochemical properties of buckwheat starch were investigated. Starch granules were in the range of $4.3{\sim}11.4$ microns in size, the average being 7.8 microns. The starch had a water-binding capacity value of 103.7%, blue value of 0.35 and amylose content of 25%. The initial and final gelatinization temperatures were $61^{\circ}$ and $65^{\circ}C$, respectively. Amylograph data showed that the starch had an initial pasting temperature of $64.5^{\circ}C$. The kinetic study of crystallization of buckwheat starch during aging at $21^{\circ}C$ suggested that the mechanism of starch crystallization is instantaneous nucleation followed by rod-like growth of crystals.

  • PDF

Studies on the Processing Properties and Interactions Between Porcine Blood Proteins and Waxy Rice Starch During Making Porcine Blood Cake

  • Lin, Chin-Wen;Yang, Jeng-Huh;Chu, Hsien-Pin;Su, Ho-Ping;Chen, Hsiao-Ling;Huang, Chia-Cheong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 2001
  • The physiochemical properties and interactions between porcine blood and waxy rice were determined. Addition of calcium chloride (0.15%) improved acceptability of blood cake and increased the gelatinization degree of waxy rice. The water-holding capacity of porcine blood gel (blood/water=60/40, v/v), extent of absorption and gelatinization of waxy rice, and scanning electron microscopy showed that blood protein matrix and waxy rice are competitors for holding water in the cooking procedure. Non-haem iron content increased linearly (R=0.95) when heating temperature rose. The presence of blood proteins caused increasing of peak temperature (Tp) of gelatinization in differential scanning calorimetric thermal gram, The microstnlcture of plasma proteins and haemoglobin appeared continuous changes, and interacted with surface of waxy rice flour in terms of network and mosaic form, respectively. The electrophoretic patterns revealed an interaction between plasma proteins and waxy rice glutelin and haemoglobin when heated could be found at temperatures above $60^{\circ}C$.

Physico-chemical Properties of Bracken (Pteridium aquilinum) Root Starch - II. Physical Properties- (고사리(Pteridium aquilinum) 뿌리 전분의 이화학적 특성에 관한 연구 -제2보 : 전분의 물리적 특성-)

  • Jo, Jae-Sun;Kim, Sung-Kon;Lee, Ke-Ho;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.133-141
    • /
    • 1981
  • The gelatinization phenomena of bracken root starch were examined by means of the loss of birefringence, degree of digestibility by amylase and X-ray diffraction. These results indicated that gelatinization temperature of the starch was $55{\sim}60^{\circ}$ and over 95% of starch were gelatinized at the temperature between 60 and $70^{\circ}C$. The swelling power of the bracken root starch was much less steeper than that of potato or tapioca starch. Amylograph data on the various starch concentrations showed the pasting temperature of $62{\sim}68^{\circ}$, peak height of $80{\sim}840$ Brabender unit (BU) and peak after cooling to $50^{\circ}C$ of $110{\sim}555\;BU.$. According to the information obtained from amylograph data, the bracken root starch showed low set back. The rate of retrogradation of the starch as tested by Texturometer was slower and faster than that of potato and tapioca starches, respectively.

  • PDF

Comparison of Physicochemical Prolperties of Cowpea and Mung Bean Starches (동부와 녹두전분의 이화학적 특성비교)

  • 윤계순
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 1989
  • Mung bean starch gel (Mook) and gel made from starch of cowpea are similar properties in texture. In order to elucidate the similarity between these two starch gels, some physicochemical properties of cowpea starch were compared with those of mung bean starch. Water bildings capacity of cowpea starch (183.6%) was a little low than that of mung bean starch (184.2%). The solobility, swelling power and optical transmitance of the cowpea starch showed a smiliar pattern to mung bean starch, but cowpea starch had a little lower solubility than mung bean starch. Amylogram of mung bean strach (4, 5, 6, 7%) shoved no peak viscosity but cowpea starch (4, 5, 6%) showed peak viscosity and both starches showed high viscosities when cooling. Cowpea and mung bean starches had the blue value of 0.41 and 0.47, the alkali number of 8.4 and 8.0, the amylose content of 30.5 and 32.1%, the molecular weight of amylose of 30,000 adn 29,258 and glucose unit per segment of amylopectin of 27.6 and 26.8 respectively. The shape of cowpea and mung bean strach granules were round and elliptical, and the mean vlalue of major axis, minor axis and the ratio of these were 20.7 and 21.8 ${\mu}{\textrm}{m}$, 14.6 and 14.4 ${\mu}{\textrm}{m}$ and 1.42 and 1.51, respectively. The extent of retrogradation determined by the glucoamylase digestion method and syneresis showed that cowpea starch gel was larger than that syneresis showed than cowpea starch gel was larger than that of mung bean starch gel. The redults of X-ray diffraction studies showed A pattern for two starches, Diffraction peak of gels disappeared with gelatinization of starches but that of two starch gels storaged for 2 days at 5$^{\circ}C$ showed a similar patterm.

  • PDF

The Morphological Properties of Acorn Starch Granules and Starch Gels (도토리 전분 및 전분겔의 형태학적 특성 연구)

  • 김영아
    • Korean journal of food and cookery science
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 1992
  • The morphological properties of acorn starch granules and starch gels were examined with scanning electron microscope and X-ray diffractometer. The shape of acorn starch granule was rounded triangular and some elliptical. The size distribution of starch granule was also analyzed. The mean value of minor axis, major axis and the ratio of those were 4.785 $\mu\textrm{m}$, 7.30 $\mu\textrm{m}$ and 0.68, respectively. The surface micro-structure of acorn starch gels were investigated by SEM. Acorn crude and refined starch gel were very different in surface micro-structure. X-ray diffraction pattern of acorn starch was C-type, and the pattern of acorn starch gels were extremely different because of disintegration of starch granules by gelatinization. The diffraction intensity of acorn refined starch gel was slightly higher than crude starch gel.

  • PDF