• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.031 seconds

Characteristics of Spodumene Powders Synthesized by Polyvinyl Alcohol Solution Technique (Polyvinyl Alcohol 폴리머 용액법으로 합성한 스포듀민 분말의 특성연구)

  • Lee, Sang-Jin;Park, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • LAS-system ceramic powder, spodumene ($Li_2O{\cdot}Al_2O_3{\cdot}4SiO_2$), was successfully synthesized by a chemical solution technique employing PVA(polyvinyl alcohol) as an organic carrier. The PVA content affected the microstructure of porous precursor gels and the crystalline development. The optimum PVA content contributed to homogeneous distribution of metal ions in the precursor gel and it resulted in the synthesis of glass free $\beta$-spodumene powder having a specific surface area of $7.57\;m^2/g$. The agglomerated $\beta$-spodumene powders were also enough soft to grind to fine powders by a simple ball milling process. The microstructures of the densified powder compacts were strongly dependant on the minor phases of spodumene solid solution and amount of liquid phase, which were formed from the inhomogeneous precursors.

New Electrochromic Materials and Prevention of Cross-talk in Passive Matrix Electrochromic Display

  • Noh, Chang-Ho;Jang, Jae-Eun;Jung, Jae-Eun;Lee, Ji-Min;Jeon, Seog-Jin;Das, Rupasree Ragini;Han, Jai-Yong;Kim, Jong-Min;Son, Seung-Uk;Park, So-Youn;Moustafa, Walid S.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.891-894
    • /
    • 2008
  • Here we describe the new structured electrochromic(EC) materials to improve the three primary colors (RGB). We also report the simply isolated electrochromic unit cell using gel type electrolyte and show cross-talk' free driving of EC display device.

  • PDF

Multi-mode Planar Waveguide Fabricated by a (110) Silicon Hard Master

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1106-1110
    • /
    • 2005
  • We fabricated (110) silicon hard master by using anisotropic wet etching for embossing. The etching chemical for the silicon wafer was a TMAH $25\%$ solution. The anisotropic wet etching produces a smooth sidewall surface and the surface roughness of the fabricated master is about 3 nm. After spin coating an organic-inorganic sol-gel hybrid material on a silicon substrate, we employed hot embossing technique operated at a low pressure and temperature to form patterns on the silicon substrate by using the fabricated master. We successfully fabricated the multi-mode planar optical waveguides showing low propagation loss of 0.4 dB/cm. The surface roughness of embossed patterns was uniform for more than 10 times of the embossing processes with a single hydrophobic surface treatment of the silicon hard master.

Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.219-221
    • /
    • 2015
  • In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm−1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm−1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.

Synthesis of Hybrid Sol Based on ZrO2-SiO2 System and their Coating Properties

  • Lee, Sang-Hoon;Park, Won-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.349-352
    • /
    • 2004
  • Organic-inorganic hybrid sol based on ZrO$_2$-SiO$_2$ system was prepared by sol-gel process. Firstly, ZrO$_2$ non-aqueous precursor sol was synthesized and then organosilane compounds which include epoxy silane (GPTS; 3-g1ycidoxypropyl tri-methoxysilane) and acryl silane (ACS; (3-(tri-methoxysilyl)propylmethacrylate)) were added to ZrO$_2$precursor sol for hybridization. Finally, com-mercial silica sol was added to improve the mechanical properties. Synthesized organic-inorganic Zr-hybrid sol was coated on polycarbonate substrate for enhancing it’s mechanical properties, especially hardness. Vicker’s hardness of polycarbonate sub strate was increased from 13.6 to 17.8 MPa and its pencil hardness was increased from 2 to 7 H, respectively, after coating and drying at 10$0^{\circ}C$ for 30 min.

Improvement of Strength and Chemical Resistance of Silicate Polymer Concrete

  • Figovsky, Oleg;Beilin, Dmitry
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18${\sim}$20%), low strength and insufficient water resistance. Therefore they can not be used as materials for load-bearing structural elements. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block of superficial pores and reduces concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. This effect is attributable to hardening of contacts between silicate binder gel globes and modification of alkaline component owing to "inoculation" of the furan radical. The optimal concrete composition with the increased strength, chemical resistance in the aggressive environments, density and crack resistance was obtained.

Development of epoxy resin with modified thermoplastic polymer and application to the carbon fiber composites (개질된 열가소성 고분자를 이용한 에폭시 수지 개발과 탄소섬유 복합재료에의 응용)

  • 이광기;김민영;김원호;안병현;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.237-240
    • /
    • 2002
  • Amino terminated polyetherimide(ATPEI) has been synthesized by bisphthalic anhydride arid m-phenylenediamine, after that characterized by differential scanning calorimetry(DSC), thermogravimetric analyzer(TGA). Fourier transform (FT-IR) spectroscopy and gel permeation chromatography(GPC). ATPEI was blend to improve the toughness of bisphenol-A type epoxy resin which was cured by nadic methyl anhydride(NMA). The fracture toughness and the molphology of the toughened epoxy resin was evaluated. The toughness of ATPEI modified epoxy resin was higher than that of the PEI modified epoxy resin. In addtion, carbon fiber/ATPEI modified epoxy resin composites were fabricated and the mechanical properties of the resulted composites were investigated.

  • PDF

Fabrication of a (100) Silicon Master Using Anisotropic Wet Etching for Embossing

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.645-648
    • /
    • 2005
  • To fabricate a (100) silicon hard master, we used anisotropic wet etching for the embossing. The etching chemical for the sili­con wafer was a TMAH 25$\%$ solution. The anisotropic wet etching produces a smooth sidewall surface inclined at 54.7°, and the surface roughness of the fabricated master is about 1 nm. After spin coating an organic-inorganic sol-gel hybrid resin on a silicon substrate, we used the fabricated master to form patterns on the silicon substrate. Thus, we successfully obtained patterns via the hot embossing technique with the (100) silicon hard master. Moreover, by using a single hydrophobic surface treatment of the master, we succeeded in achieving uniform surface roughness of the embossed patterns for more than ten embossments.

Optimization of Lipase Pretreatment Prior to Lipase Immobilization to Prevent Loss of Activity

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kim, Seung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.650-654
    • /
    • 2007
  • In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be $40^{\circ}C$, 200rpm, and 45min, respectively. The activity of immobilized soybean oil pretreated lipase was 630U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.

Design of Pore and Matter Architectures in Cobalt Oxide Electrode for Supercapacitor (수퍼커패시터용 산화코발트전극의 세공과 재료구조의 설계)

  • Kim, Han-Joo;Shin, Dal-Woo;Kim, Yong-Chul;Kim, Seong-Ho;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.425-427
    • /
    • 2000
  • We describe the preparation of a cobalt oxide in which the solid-pore architecture of the material is controllably varied. All $CoO_2$ gels derived from $CoCl_2$-based sol-gel synthesis, but exhibit markedly different final pore structures based on how the pore fluid is removed from forces that result from extraction are either low or nonexistent. These nanoscale mesoporous materials have higher $CoO_2$ crystallites. Controlling both the pore and solid architecture on the nanoscale offers a strategy for the design of new supercapacitor and charge-storage materials.

  • PDF