• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.035 seconds

A Novel Chenodeoxycholic Derivative HS-1200 Enhances Radiation-induced Apoptosis in Human MCF-7 Breast Cancer Cells (담즙산 합성유도체(HS-1200)가 인체 유방암 세포주(MCF-7)에서 유도하는 방사선 감작 효과)

  • Lee Hyung Sik;Choi Young Min;Kwon Hyuk Chan;Song Yeon Suk
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Purpose : To examine whether a synthetic bile acid derivatives (HS-1200) sensitizes the radiation-induced apoptosis in human breast cancer cells (MCF-7) and to investigate the underlying mechanism. Materials and Methods : Human breast cancer cells (MCF-7) in exponential growth phase were treated with HS-1200 for 24 hours at 37$^{\circ}C$ with 5$\%$ CO$_{2}$ in air atmosphere. After removal of HS-1200, cells were irradiated with 2$\~$8 Gy X-ray, and then cultured Ii drug-free media for 24-96 hours. The effect of radiation on the clonogenicity of MCF-7 cells was determined with clonogenic cell survival assay with 16$\mu$M of HS-1200. The induction of apoptosis was determined using agarose gel electrophoresis and Hoechst staining. The expression level of apoptosis-related molecules, such as PARP, Bax, Bcl-2, Bak and AIF, were assayed by Western blotting analysis with 40$\mu$M of HS-1200 combined with 8 Gy irradiation. To examine the cellular location of cytochrome c, bax and AIF immunofluorescent stainings were undertaken. Results : Treatment of MCF-7 cells with 40$\mu$M of HS-1200 combined with 8 Gy irradiation showed several changes associated with enhanced apoptosis by agarose gel electrophoresis and Hoechst staining. HS-1200 combined with 8 Gy irradiation treatment also enhanced production of PARP cleavage products and increased Bax/Bcl-2 ratio by Western blotting. Loss of mitochondrial membrane potential ($\Delta$$\psi$$_{m}$) and increased cytochrome c staining indicated that cytochrome c had been released from the mitochondria in HS-1200 treated cells. Conclusion : We demonstrated that combination treatment with a synthetic chenodeoxycholic acid derivative HS-1200 and irradiation enhanced radiation-induced apoptosis of human breast cancer cells (MCF-7). We suggest that the increased Bax/Bcl-2 ratio In HS-1200 co-treatment group underlies the increased radio sensitivity of MCF-7 cells. Further futures studies are remained elusive.

Effects of Cr Doping on Magnetic Properties of Inverse Spinel CoFe2O4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Park, Jae-Yun
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.51-54
    • /
    • 2006
  • Variation of magnetic properties through Cr substitution for Co in inverse-spinel $CoFe_2O_4$ has been investigated by vibrating-sample magnetometry (VSM) and conversion electron $M\ddot{o}ssbauer$ spectroscopy (CEMS). $Cr_{x}Co_{1-x}Fe_2O_4$ samples were prepared as thin films by a sol-gel method. The lattice constant of the $Cr_{x}Co_{1-x}Fe_2O_4$ samples was found to remain unchanged, explainable in terms of a reduction of tetrahedral $Fe^{3+}$ ion to $Fe^{2+}$ due to substitution of $Cr^{3+}$ ion into octahedral $Co^{2+}$ site. The existence of the tetrahedral $Fe^{2+}$ ions in $Cr_{x}Co_{1-x}Fe_2O_4$ was confirmed by CEMS analysis. Room-temperature magnetic hysteresis curves for the $Cr_{x}Co_{1-x}Fe_2O_4$ films measured by VSM revealed that the saturation magnetization $M_s$ increases by Cr doping. The $M_s$ is maximized when x = 0.1 and decreases for higher x but is still bigger than that of $CoFe_2O_4$. The increase of $M_s$ can be explained partly by the reduction of the tetrahedral $Fe^{3+}$ ion to $Fe^{2+}$.

Comparison of the Walz Nomogram and Presence of Secondary Circulating Prostate Cells for Predicting Early Biochemical Failure after Radical Prostatectomy for Prostate Cancer in Chilean Men

  • Murray, Nigel P;Reyes, Eduardo;Orellana, Nelson;Fuentealba, Cynthia;Jacob, Omar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7123-7127
    • /
    • 2015
  • Purpose: To determine the utility of secondary circulating prostate cells for predicting early biochemical failure after radical prostatectomy for prostate cancer and compare the results with the Walz nomagram. Materials and Methods: A single centre, prospective study of men with prostate cancer treated with radical prostatectomy between 2004 and 2014 was conducted, with registration of clinical-pathological details, total serum PSA pre-surgery, Gleason score, extracapsular extension, positive surgical margins, infiltration of lymph nodes, seminal vesicles and pathological stage. Secondary circulating prostate cells were obtained using differential gel centrifugation and assessed using standard immunocytochemistry with anti-PSA. Biochemical failure was defined as a PSA >0.2ng/ml, predictive values werecalculated using the Walz nomagram and CPC detection. Results: A total of 326 men participated, with a median follow up of 5 years; 64 had biochemical failure within two years. Extracapsular extension, positive surgical margins, pathological stage, Gleason score ${\geq}8$, infiltration of seminal vesicles and lymph nodes were all associated with higher risk of biochemical failure. The discriminative value for the nomogram and circulating prostate cells was high (AUC >0.80), predictive values were higher for circulating prostate cell detection, with a negative predictive value of 99%, sensitivity of 96% and specificity of 75%. Conclusions: The nomagram had good predictive power to identify men with a high risk of biochemical failure within two years. The presence of circulating prostate cells had the same predictive power, with a higher sensitivity and negative predictive value. The presence of secondary circulating prostate cells identifies a group of men with a high risk of early biochemical failure. Those negative for secondary CPCs have a very low risk of early biochemical failure.

Investigation of Association between oipA and iceA1/iceA2 Genotypes of Helicobacter pylori and Gastric Cancer in Iran

  • Aghdam, Saeed Mahboubi;Sardari, Zeinab;Safaralizadeh, Reza;Bonyadi, Mortaza;Abdolmohammadi, Reza;Moghadam, Mostafa Soltani;Khalilnezhad, Ahad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8295-8299
    • /
    • 2014
  • Background: H pylori is the main causative agent of Gastric cancer and chronic gastritis. Genetic diversity of H. pylori has major contribution in its pathogenesis. We investigated the prevalence of oipA and iceA1/iceA2 positive strains of H. pylori among patients with gastric cancer and gastritis. Materials and Methods: Sampling performed by means of endoscopy from 86 patients. DNA was extracted from tissue samples using DNA extraction kit. PCR assay was performed and products were monitored by Agarose Gel Electrophoresis. Results: Urease Test and 16S rRNA PCR did not show significant differences in detection of H. pylori. The frequency of iceA1 allele in patients with gastric cancer was significantly higher than those with gastritis (p<0.05). However, there was no significant difference in prevalence of oipA and iceA2 genes among the two groups of patients (p>0.05). Conclusions: The iceA1 gene, but the oipA and iceA2 genes, is associated with H. pylori-induced gastric cancer. However, confirmatory studies must be performed in future.

A study on Check Pattern of Nail Art (네일 아트에 나타난 체크 패턴에 관한 연구)

  • Jeong, Seung-Eun;Kim, Jeong-Mee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.1
    • /
    • pp.53-68
    • /
    • 2015
  • The purpose of this study is to analyze check pattern of nail art from 2011 to 2013. The results of this study are as follows; 1) Check pattern of nail art is total 257 patterns, and there are 84 argyle, 29 tartan, 24 harlequin, 24 over, 23 window-pane, 15 stitcheds, 13 hound tooth, 10 block, 10 madras, 8 gingham, 8 gradation, 7 shepherd, and 2 tattersall check patterns. Through this result, in nail art, the relatively simple patterns such as a vertical pattern, a horizontal pattern, and cross or overlap diagonal line are used more than elaborate and complex check patterns of a fibrous tissue from a weaving process. 2) In check pattern of nail art, N-affiliated color and R-affiliated color are remarkably well-used, because of the effects of argyle, tartan, window-pane, harlequin, stitched, over, and hound tooth check patterns used the most during the past three years. Especially, most tartan, harlequin, over, and hound tooth check patterns use their own special colors such as R-affiliated colors and N-affiliated colors as it is, and argyle, window-pane, stitched, and over check patterns use well by arranging N-affiliated colors and R-affiliated colors. 3) The most used expressive technique is hand painting to express check pattern in nail art, because new products related to UV gel are well launched. These materials can draw fine line that is hard to express by existing polish easily and simply, and not only have set quickly hard, so procedure time is very short, so it is compatible to draw check pattern personally, but also it is well covered, so check pattern is more clearly expressed.

  • PDF

Production of Enzymatic Hydrolysate Including Water-soluble Fiber from Hemicellulose Fraction of Chinese Cabbage Waste (효소적 분해에 의한 배추부산물 hemicellulose 분획으로부터 수용성 식이섬유소 함유 가수분해물의 생산)

  • Park, Seo Yeon;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This study was performed to determine the optimal hydrolysis conditions for the production of hydrolysates, including water-soluble dietary fiber from Chinese cabbage, with commercial enzymes. The optimal pH and temperature for hydrolysis of the hemicellulose fraction were pH 5.0 and $40^{\circ}C$, and optimal enzyme concentrations were 45 units and 21 units for Shearzyme plus and Viscozyme L, respectively. The yields of the hydrolysate including the water-soluble dietary fiber from the hemicellulose fraction by Shearzyme plus and Viscozyme L were 22.64 and 24.73%, respectively, after a 72 h reaction. The molecular weight distribution of alcohol-insoluble fiber was characterized by gel chromatography; degradation of hemicellulose increased with increasing reaction time. Our results indicate that the hemicellulose fraction was degraded to water-soluble dietary fiber by enzymatic hydrolysis, and its hydrolysate could be utilized as new watersoluble food materials.

Development of a Rapid Method for the Screening of Conjugated Linoleic Acid (CLA)-Producing Strains of Bifidobacterium breve

  • Choi, Sun-Hae;Lee, Kyoung-Min;Kim, Kwan-Hu;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.806-815
    • /
    • 2018
  • This study was performed to isolate some strains of Bifidobacterium breve from fecal materials of neonates and to screen them for the biotransformation activity of converting linoleic acid into conjugated linoleic acid (CLA). Fecal samples were collected from twenty healthy neonates between 14 and 100 days old, and four hundred colonies were randomly selected from a Bifidobacterium selective transoligosaccharide medium. A duplex polymerase chain reaction technique was developed for the rapid and accurate molecular characterization of the B. breve strains that have been reported to show the species-specific characteristic of CLA production. They are identified by 16S ribosomal DNA, fructose-6-phosphate phosphoketolase encoding genes (xfp), and rapid pulsed field gel electrophoresis. Thirty-six isolates were identified as B. breve, and just two of the 12 neonates were harboring B. breve strains. Each isolate showed different CLA-producing ability in the spectrophotometric assay. All of the positive strains from the primary spectrophotometric assay were confirmed for their CLA-producing activities using gas-chromatographic analysis, and their conversion rates were different, depending on the strain isolated in this study. Some strains of B. breve were successfully isolated and characterized based on the CLA-producing activity, and further studies are necessary to characterize the enzyme and the gene responsible for the enzyme activity.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

Studies on Cure Behaviors and Rheological and Mechanical Properties of Epoxy/Polyurethane Blend System initiated by Latent Thermal Catalyst (열잠재성 촉매에 의한 에폭시/폴리우레탄 블랜드계의 경화거동, 유변학적 및 기계적 물성에 관한 연구)

  • Gang, Jun-Gil;Gwon, Su-Han;Park, Su-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.233-240
    • /
    • 2002
  • In this work, the cure kinetics and rheological and mechanical properties of diglycidylether of bispheonol A (DGEBA, EP)/polyurethane (PU) blends were investigated. The 1 wt% N-benzylpyrazinium hexafluoroantiminate (BPH) was used as a latent thermal catalyst. Latent properties were performed by measurement of the conversion as a function of reaction temperature using DSC. And the rheological properties of the blend systems were investigated under isothermal conditions using a rheometer. Crosslinking activating energies (Ec) were also determined from the Arrhenius equation based on gel time and curing temperature. The impact strengths were measured as mechanical properties of the casting specimens. The BPH in the blend systems could be an excellent latent thermal catalyst without any co-initiator. The rheological results showed that Ec was highest when PU content was 30 wt% which was in good agreement with the impact strengths. This was probably due to the intermolecular hydrogen bonding between the hydroxyl group in PU and EP, resulting in increasing the crosslinking density.

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.