DOI QR코드

DOI QR Code

Studies on Cure Behaviors and Rheological and Mechanical Properties of Epoxy/Polyurethane Blend System initiated by Latent Thermal Catalyst

열잠재성 촉매에 의한 에폭시/폴리우레탄 블랜드계의 경화거동, 유변학적 및 기계적 물성에 관한 연구

  • Gang, Jun-Gil (Department of Chemistry, Chungbuk National University) ;
  • Gwon, Su-Han (Department of Chemistry, Chungbuk National University) ;
  • Park, Su-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2002.06.20

Abstract

In this work, the cure kinetics and rheological and mechanical properties of diglycidylether of bispheonol A (DGEBA, EP)/polyurethane (PU) blends were investigated. The 1 wt% N-benzylpyrazinium hexafluoroantiminate (BPH) was used as a latent thermal catalyst. Latent properties were performed by measurement of the conversion as a function of reaction temperature using DSC. And the rheological properties of the blend systems were investigated under isothermal conditions using a rheometer. Crosslinking activating energies (Ec) were also determined from the Arrhenius equation based on gel time and curing temperature. The impact strengths were measured as mechanical properties of the casting specimens. The BPH in the blend systems could be an excellent latent thermal catalyst without any co-initiator. The rheological results showed that Ec was highest when PU content was 30 wt% which was in good agreement with the impact strengths. This was probably due to the intermolecular hydrogen bonding between the hydroxyl group in PU and EP, resulting in increasing the crosslinking density.

본 연구에서는 잠재성 양이온 개시제 (N-benzyl pyrazinium hexafluoroantiminate, BPH)를 이용한 에폭시/폴리우레탄 블랜드계의 혼합조성에 따른 경화거동과 유변학적 특성 그리고 기계적 물성 변화에 대하여 연구하였다. 블랜드계의 반응성은 DSC를 이용하여 반응 온도에 따른 전환률을 구하여 측정하였으며, 유변학적 특성은 레오미터를 이용한 등온 실험을 통하여 측정하였고, 가교 활성화에너지(Ec)는 겔화 시간과 경화 온도를 이용하여 Arrhenius 방정식으로 구하였다. 한편, 경화된 시편의 기계적 물성은 충격강도 실험을 통하여 측정하였다. 실험결과, 블랜드계의 열잠재성 촉매로 사용된 BPH는 어떤 공개시제 없이도 우수한 촉매 특성을 나타내었다. 본 블랜드계의 가교 활성화에너지 및 충격강도는 PU가 30 wt% 첨가되었을 때 최대를 나타내었는데, 이는 EP와 PU간의 수소결합으로 인한 치밀한 가교밀도의 증가 때문이라고 사료된다.

Keywords

References

  1. Lee, H.; Neviles, K. Eds., Handbook of Epoxy Resins;McGraw-Hill: New York, 1967; 1.
  2. May, C. A. Epoxy resins, Chem. Technol; Marcel Dekker:New York, 1988; 551.
  3. Ng, H.; Manas-Zloczower, I. Polym. Eng. Sci. 1993,33, 211. https://doi.org/10.1002/pen.760330404
  4. Park, S. J.; Park, W. B.; Lee, J. R. Polym. J. 1999, 31, 28. https://doi.org/10.1295/polymj.31.28
  5. Han, X.; Wang, Y.; Pan, S.; Zheng, Q. Polym. Mater.Sci. Eng. 1991, 65, 222.
  6. Sperling, L. H.; Carraher, C. E. Polym. Mater. Sci. Eng.1991, 65, 222.
  7. Wise, C. W.; Cook, W. D.; Goodwin, A. A. Polymer,2000, 41, 4625. https://doi.org/10.1016/S0032-3861(99)00686-2
  8. Kimoto, M.; Mizutani, K. J. Mater. Sci. 1997, 32, 2497.
  9. Oertel, G. Polyurethane Hand Book; Hanser: NewYork, 1995.
  10. Lin, S. B.; Hwang, K. S.; Tsay, S. Y.; Cooper, S. L.Colloid & Polym. Sci. 1985, 263, 128. https://doi.org/10.1007/BF01412787
  11. Crivello, J. V.; Lee, J. L. Macromolecules, 1981, 14,1141. https://doi.org/10.1021/ma50006a001
  12. Abu-Abdoun, I. I.; Ali, A. Eur. Polym. J. 1993, 29,1439. https://doi.org/10.1016/0014-3057(93)90055-K
  13. Pappas, S. P.; Lam, L. H. J. Coat. Technol. 1981, 53, 43.
  14. Gu, J.; Narang, S. C.; Pearce, E. M. J. Appl. Polym. Sci.1985, 30, 2977.
  15. Morio, K.; Murase, H.; Tsuchiya, H. J. Appl. Polym.Sci. 1986, 32, 5727. https://doi.org/10.1002/app.1986.070320705
  16. Crivello, J. V.; Lee, J. L. Macromolecules, 1981, 14, 1141. https://doi.org/10.1021/ma50006a001
  17. Crivello, J. V. J. Polym. Sci. Part A: Polym. Chem.1999, 37, 4241. https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4241::AID-POLA1>3.0.CO;2-R
  18. Rosato, S. V.; Dimattia, D. P.; Rosato, D. V. Designingwith Plastics and Composites; Nostrand Reinhold: NewYork, 1991.
  19. Lee, S. B.; Park, Y. S.; Lee, K. W.; Endo, T. Chem. Lett.1995, 16, 287.
  20. Park, S. J.; Kim, H. C.; Lee, H. I.; Suh, D. H. Macromolecules,2001, 34, 7574.
  21. Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29,759-763. https://doi.org/10.1295/polymj.29.759
  22. Ashok Kumar A.; Alagar M.; Rao R. M. V. G. K. J.Appl. Polym. Sci. 2001, 81, 2335.
  23. Winter, H. H. Encyclopedia of polymer science andengineering, 2nd Ed.; John Wiley & Sons: 1989, 343.
  24. Tung, C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27,569. https://doi.org/10.1002/app.1982.070270220
  25. Winter, H. H. Polym. Eng. Sci. 1987, 27, 1698. https://doi.org/10.1002/pen.760272209
  26. Oyanguren, P. A.; Williams, R. J. J. Appl. Polym. Sci.1993, 47, 1361. https://doi.org/10.1002/app.1993.070470806
  27. Takahama, T.; Geil, P. H. J. Polym. Sci. 1982, 20, 453.
  28. Sung, C. S. P.; Pyum, E.; Sun, H. L. Macromolecules,1986, 19, 2922. https://doi.org/10.1021/ma00166a008
  29. Dean, K.; Cook, W. D.; Rey, L.; Galy, J.; Sautereay, H.Macromolecules, 2001, 34, 6624.
  30. Lin, S. T.; Huang, S. K. J. Polym. Sci. Part A: Polym.Chem. 1996, 34, 1907. https://doi.org/10.1002/(SICI)1099-0518(19960730)34:10<1907::AID-POLA8>3.0.CO;2-L
  31. Li, Y.; Mao, S. J. Appl. Polym. Sci. 1996, 61, 2062.
  32. Park, S. J.; Jin J. S. J. Appl. Polym. Sci. 2001, 82, 779.

Cited by

  1. Synthesis, Characterization and Applications of Polyurethane Aryl Cyanate Ester Resin vol.19, pp.1, 2007, https://doi.org/10.1177/0954008306073122