• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.037 seconds

Synthesis and Electrochemical Characteristics of Carbon Coated SiOx/ZnO Composites by Sol-gel Method (졸겔법으로 제조한 탄소피복된 SiOx/ZnO 복합체의 합성 및 전기화학적 특성)

  • Baek, Gwang-Yong;Jeong, Sang Mun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • $SiO_x/ZnO$ composites were prepared from sol-gel method for excellent cycle life characteristics. The composites were coated by PVC as a carbon precursor. ZnO removal to create a void space therein was able to buffer the volume change during charge and discharge. To determine the crystal structure and the shape of the synthesized composite, XRD, SEM, TEM analysis was performed. The carbon contents in the composites were confirmed by TGA. The pore structure and pore size distribution of the composite was measured with the BET specific surface area analysis and BJH pore size distribution. Enhanced electric conductivity by carbon addition was determined from powder resistance measurement. Electrochemical properties were measured with the AC impedance and the charge and discharge cycle life characteristics. When carbon was coated on the $SiO_x/ZnO$ sample, the electrical conductivity and the discharge capacity were increased. After removal of ZnO with HCl the surface area of the sample was increased, but the discharge capacity was decreased. $SiO_x/ZnO$ sample without acarbon coating showed very low discharge capacity, and after carbon coating the sample showed high discharge capacity. For cycle life characteristics, $C-SiO_x/ZnO$ composite (Zn : Si : C = 1 : 1 : 8) with a capacity of $815mAh\;g^{-1}$ at 50 cycle and 0.2 C has higher capacity than existing graphite-based anode materials.

Preparation of Hydrophobic Antimicrobal Compounds Encapsulated Nanoparticles Using Alkoxysilane-functionalized Amphiphilic Polymer Precursor and Their Antimicrobial Properties (실란 기능화 양친성 고분자 전구체를 이용한 소수성 항균물질 담지 나노 입자 제조 및 항균 특성)

  • Kim, Nahae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • In this study, nanoparticles which encapsulated hydrophobic antimicrobial compounds with 50wt% of payload and 70%of solid content were prepared. These nanoparticles could be dispersed at water as well as various medium. Water dispersible organic-inorganic (O-I) hybrid nanoparticles were first prepared using alkoxysilane-functionalized amphiphilic polymer precursors through a conventional sol-gel process. Hydrophobic antimicrobial compound, Eugenol encapsulated nanoparticles were prepared using these O-I hybrid nanoparticles through a new nanoprecipitation process. The effect of various preparation on the size of nanoparticles, amount of payload, antimicrobial activity, and release rate of encapsulated compounds was investigated. All eugenol-encapsulated O-I nanoparticles regardless of preparation condition showed the same minimal inhibitory concentration (MIC) (50mg/ml) and 99% of antimicrobial activity for every strain. Their antimicrobial activity could maintain longer than two weeks. Especially, eugenol-encapsulated O-I nanoparticles prepared using tetraethoxysilane (TEOS) exhibited the highest payload (50wt%) and the lowest release rate which was owing to higher inorganic content in the O-I nanoparticles. And these O-I nanoparticles dispersed in hexanediol (HD) showed the highest antimicrobial activity and solid content (70wt%) because HD acted as a solvent as well as a antimicrobial agent.

Printing Performance Evaluation of Water-dispersed Pigment Ink according to Additive Conditions of Film Substrate Surface Coating Agent (필름기재 표면 코팅제의 첨가물질 조성 조건에 따른 수분산 안료잉크의 프린팅 성능 평가)

  • Hyeok-Jin Kim;Hye-Ji Seo;Eun-Ha Kang;Min-Woo Han;Dong-Hyeon Lee;Dong-Jun Kwon;Jin-Pyo Hong
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.196-205
    • /
    • 2023
  • Water-dispersed pigment is on-going study for without air pollution in the textile and print industry. Primer treatment is essential for the substrate to improve the printing quality of eco-friendly water-dispersed pigment ink. Otherwise in the case of untreated primer, the water-dispersed pigment ink will dry onto the surface and cause defective images. This study was conducted on film substrate coating (primer) to fix eco-friendly water-dispersed pigment ink on film substrate. The drying, bleeding, and color strength of the pigment ink were examined depending on the composition and mixing ratio of the coating solution. The mixing ratio of silica gel in the coating film is increased to 0, 0.5, 1, 2 and 3 and results that DK-1-3 of silica gel ratio of 1 showed the lowest bleeding such as 52%, the letter thickness of 0.76mm and DK-1-5 of SG ratio of 3 showed the highest bleeding such as 304%, the letter thickness of 2.02mm. The mixing ratio of SPA in the coating film is increased to 2.5, 5, 7.5, SPA ratio of 7.5 has a bleeding ratio of 9% and letter thickness of 0.544mm. It showed the closest value to 0.5mm. According to the result, the optimal mixing ratio of binder, polymer coagulant, silica gel is 100:7.5:1.

Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field (Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구)

  • Ji-Hye Lee;Sang-Min Lee;Young-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.294-302
    • /
    • 2023
  • Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4 (0 ≤ x ≤ 0.5), was synthesized using the sol-gel method to investigate the crystal structure, microstructure, magnetic properties, high-frequency characteristics, and electromagnetic (EM) wave absorption characteristics as a function of Mn substitution. As the Mn content increased, a continuous decrease in saturation magnetization (MS) was observed with little change in coercivity (HC). Samples for each composition (x) exhibited strong EM wave absorption performance with first and second strong EM wave absorption regions satisfying minimum reflection loss, RLmin < -40 dB in the 1.5~2.5, 6~11 GHz range, respectively. The EM wave absorption in Ni-Mn-Zn ferrite depends on magnetic loss, and adjusting µ' and µ'' spectra by Mn substitution or H field allows control of the EM wave absorption frequency.

Long-term Air Stability of Small Molecules passivated-Graphene Field Effect Transistors

  • Shin, Dong Heon;Kim, Yoon Jeong;Kim, Sang Jin;Moon, Byung Joon;Oh, Yelin;Ahn, Seokhoon;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.237.1-237.1
    • /
    • 2016
  • Electrical properties of graphene-based field effect transistors (G-FETs) can be degraded in ambient conditions owing to physisorbed oxygen or water molecules on the graphene surface. Passivation technique is one of a fascinating strategy for fabrication of G-FETs, which allows to sustain electrical properties of graphene in the long term without disrupting its inherent properties: transparency, flexibility and thinness. Ironically, despite its importance in producing high performance graphene devices, this method has been much less studied compared to patterning or device fabrication processes. Here we report a novel surface passivation method by using atomically thin self-assembled alkane layers such as C18- NH2, C18-Br and C36 to prevent unintentional doping effects that can suppress the degradation of electrical properties. In each passivated device, we observe a shift in charge neutral point to near zero gate voltage and it maintains the device performance for 1 year. In addition, the fabricated PG-FETs on a plastic substrate with ion-gel gate dielectrics exhibit not only mechanical flexibility but also long-term stability in ambient conditions. Therefore, we believe that these highly transparent and ultra-thin passivation layers can become a promising candidate in a wide range of graphene based electronic applications.

  • PDF

Comparison of retention characteristics of ferroelectric capacitors with $Pb(Zr, Ti)O_3$ films deposited by various methods for high-density non-volatile memory.

  • Sangmin Shin;Mirko Hofmann;Lee, Yong-Kyun;Koo, June-Mo;Cho, Choong-Rae;Lee, June-Key;Park, Youngsoo;Lee, Kyu-Mann;Song, Yoon-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • We investigated the polarization retention characteristics of ferroelectric capacitors with $Pb(Zr,Ti)O_3$ (PZT) thin films which were fabricated by different deposition methods. In thermally-accelerated retention tests, PZT films which were prepared by a chemical solution deposition (CSD) method showed rapid decay of retained polarization charges as the thickness of the films decreased down to 100 nm, while the films which were grown by metal organic chemical vapor deposition (MOCVD) retained relatively large non-volatile charges at the corresponding thickness. We concluded that in the CSD-grown films, the thicker interfacial passive layer compared with the MOCVD-grown films had an unfavorable effect on retention behavior. We observed the existence of such interfacial layers by extrapolation of the total capacitance with thickness of the films and the capacitance of these layers was larger in MOCVD-grown films than in CSD-grown films. Due to incomplete compensation of surface polarization charges by the free charges in the metal electrodes, the interfacial field activated the space charges inside the interfacial layers and deposited them at the boundary between the ferroelectric layer and the interfacial layer. Such space charges built up an internal field inside the films, which interfered with domain wall motion, so that retention property at last became degraded. We observed less imprint which was a result of less internal field in MOCVD-grown films while large imprint was observed in CSD-grown films.

A Study on the Application of Aluminosilicate Sols in Shell Mold for Investment Casting ( I ) (정밀주조용 쉘 몰드에 알루미노실리케이트계 졸의 응용에 관한 연구 ( I ))

  • Kim, Jae-Won;Kim, Du-Hyeon;Seo, Seong-Mun;Jo, Chang-Yong;Choe, Seung-Ju;Kim, Jae-Cheol;Park, Yeong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1188-1195
    • /
    • 1999
  • The effect of aluminosilicate sol on the formation of mullite layer in zircon shell mold was investigated. Aluminosilicate sol was prepared by mixing of colloidal silica(NALCO(R) 1130) and an aqueous solution of aluminium nitrate at room temperature. The sol gelled at 50$^{\circ}C$ for 48 hrs. It was identified that the gel consists of aluminosilicate complexes and gibbsite. The coordination number of all aluminium ion bonded with silicon ion was four. Mullite phase formed by sintering above 1300$^{\circ}C$. XRD peak of mullite sharpened with increasing sintering temperature and the content of aluminium nitrate. Mullite phase displayed whisker-like 0.5~5${\mu}m $ particles. Separation between 1st and 3rd layers during sintering and the difference in thermal expansion coefficient between residual silica and mullite.

  • PDF

Study on crystallization of $PbTiO_3$ thin films by the Sol-Gel method (Sol-Gel법을 이용한 $PbTiO_3$ 박막의 결정화에 관한 연구)

  • Kyu Seog Hwang;Byung Wan Yoo;Byung Hoon Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.199-209
    • /
    • 1994
  • $PbTiO_3$ thin films were prepared on soda-lime-silica slide glasses, Si-wafer and sapphire substrate by the dip-coating of precursor solution. As starting materials, titanium tetra iso-propoxide and lead acetate trihydrate were used. Then acetylacetone was added to prepare stable sol. The effect of the parameters such as viscosity and composition of sol were investigated. The optical transmittance at visible range, refractive index, IR spectra were measured in varying compositions, thickness and heat treatment temperature. The crystallization of $PbTiO_3$ films were measured by using XRD and SEM. Diffusion of compositions from slide glass to thin film were investigated by using EDX, too. These sols not precipitated for 20 days. Transmittance of $PbTiO_3$ films at visible range were decreased with the increase of thickness and heat treatment temperatures, and were exhibited flat spectra. Pyrochlore type appeared in the films on slide glass and perovskite type appeared in the films on Si-wafer or sapphire at $600^{\circ}C$. Perovskite crystals transformed to $PbTi_3O_7$ phase at $800^{\circ}C$.

  • PDF

Calcium Aluminate Phosphor Supported $TiO_2$ Nanoparticles (산화(酸化)티탄 나노입자(粒子)가 담지(擔持)된 칼슘 알루미늄 형광체(螢光體))

  • Thube, Dilip R.;Kim, Jin-Hwan;Kang, Suk-Min;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.24-30
    • /
    • 2009
  • Rare earth based calcium aluminate phosphor ($CaAl_2O_4:Eu^{2+}$, $Nd^{3+}$) supported $TiO_2$ nanoparticles are synthesized by using sol-gel method, which are further characterized using powder X-ray diffraction (XRD), fourier transform infrared (FT-IR), diffuse reflectance UV-Visible spectroscopy (DRS UV-Vis) and transmission electron microscopy (TEM). The XRD pattern of as-prepared and sintered phosphor supported $TiO_2$ does not show the tendency to change the crystal structure from anatase to rutile phase up to $600^{\circ}C$. This indicates that the phosphor support might inhibit the densification and crystallite growth by providing dissimilar boundaries. The diffuse reflectance spectral (DRS) measurements showed shift towards longer wavelength indicating reduction in the band-gap energy as compared to free $TiO_2$. The FT-IR spectra of phosphor supported $TiO_2$ nanoparticles show shift in the peak positions to lower wavelengths. This indicates that the $TiO_2$ nanoparticles are not free, but covalently bonded to the phosphor support. TEM micrographs show presence of crystalline and spherical $TiO_2$ nanoparticles (8 - 15 nm diameter) dispersed uniformly on the surface of phosphor.

Ferroelectric Properties of ErMnO3 Thin Film Prepared by Sol-gel Method (졸겔법으로 제조한 ErMnO3 박막의 강유전 특성)

  • Kim, Yoo-Taek;Kim, Eung-Soo;Chae, Jung-Hoon;Ryu, Jae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.829-834
    • /
    • 2002
  • Ferroelectric properties of $ErMnO_3$ thin films deposited on Si(100) substrate using Sol-gel process with metal salts were investigated. $ErMnO_3$ thin films with a (001) preferred orientation were crystallized at 800$^{\circ}C$. The $ErMnO_3$ thin film post-annealed at 800$^{\circ}C$ for 1 h showed the dielectric constant(k) of 26 and the dielectric loss(tan ${\delta}$) of 0.032 at the frequency range from 1 to 100 KHz. The grain size of $ErMnO_3$ thin film post-annealed at 800 for 1 h was 10∼30 nm. The remanent polarization($P_r$) of the $ErMnO_3$ thin films increased with increasing (001) preferred orientation. The $ErMnO_3$ thin films post-annealed at 800$^{\circ}C$ for 1 h showed the remanent polarization($P_r$) of 400 nC/$cm^2$, with the increase of post-annealing time at 800$^{\circ}C$, the coercive field($E_c$) of thin films was lowered because the dense and homogeneous thin films were obtained.