DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characteristics of Carbon Coated SiOx/ZnO Composites by Sol-gel Method

졸겔법으로 제조한 탄소피복된 SiOx/ZnO 복합체의 합성 및 전기화학적 특성

  • Baek, Gwang-Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 백광용 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2016.10.24
  • Accepted : 2016.11.27
  • Published : 2016.12.30

Abstract

$SiO_x/ZnO$ composites were prepared from sol-gel method for excellent cycle life characteristics. The composites were coated by PVC as a carbon precursor. ZnO removal to create a void space therein was able to buffer the volume change during charge and discharge. To determine the crystal structure and the shape of the synthesized composite, XRD, SEM, TEM analysis was performed. The carbon contents in the composites were confirmed by TGA. The pore structure and pore size distribution of the composite was measured with the BET specific surface area analysis and BJH pore size distribution. Enhanced electric conductivity by carbon addition was determined from powder resistance measurement. Electrochemical properties were measured with the AC impedance and the charge and discharge cycle life characteristics. When carbon was coated on the $SiO_x/ZnO$ sample, the electrical conductivity and the discharge capacity were increased. After removal of ZnO with HCl the surface area of the sample was increased, but the discharge capacity was decreased. $SiO_x/ZnO$ sample without acarbon coating showed very low discharge capacity, and after carbon coating the sample showed high discharge capacity. For cycle life characteristics, $C-SiO_x/ZnO$ composite (Zn : Si : C = 1 : 1 : 8) with a capacity of $815mAh\;g^{-1}$ at 50 cycle and 0.2 C has higher capacity than existing graphite-based anode materials.

수명특성이 우수한 실리콘 음극재를 제조하기 위해 졸겔법을 통해 $SiO_x/ZnO$ 복합체를 제조하였고, 제조된 복합체는 PVC를 탄소 전구체로 하여 탄소를 피복하였다. 복합체에 포함된 ZnO를 HCl로 제거하여 내부에 빈 공간을 만들어 충 방전에 따른 실리콘의 부피변화를 완화할 수 있게 하였다. 합성된 복합체의 결정구조와 형상을 파악하기 위해 XRD, SEM, TEM 분석을 실시하였다. 탄소 피복된 복합체에 포함된 탄소함량을 TGA를 통해 알아보았으며, 복합체의 기공구조를 확인하기 위해 BET 비표면적 분석과 BJH 기공분포를 확인하였다. 탄소의 추가로 향상된 전기전도성을 측정하였으며, 전기화학적 특성은 AC 임피던스 측정과 충 방전 및 수명특성을 확인하였다. $SiO_x/ZnO$시료에 탄소를 피복할 경우에 전기전도도가 증가하였으며, 방전용량도 증가하였다. 염산으로 ZnO를 제거한 시료의 경우에 표면적은 증가하였으나, 전지의 방전용량은 오히려 감소하였다. 탄소를 피복하지 않은 $SiO_x/ZnO$ 시료의 경우에 방전용량이 매우 낮았으며, 탄소를 피복한 후의 시료는 높은 충방전용량을 나타내었다. 수명특성의 경우, $C-SiO_x/ZnO$ 복합체(Zn : Si : C = 1 : 1 : 8)가 0.2 C의 전류량에서 50 사이클에서 $815mAh\;g^{-1}$의 용량으로 기존 흑연계 음극재보다 높은 용량을 나타내었다.

Keywords

References

  1. Liu, X., Xie, K., Zheng, C., Wang, J., and Jing, Z., "Si-O-C Materials Prepared with a Sol-gel Method for Negative Electrode of Lithium Battery," J. Power Sources, 214, 119-123 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.082
  2. Ma, X., Liu, M., Gan, L., Tripathi, P. K., Zhao, Y., Zhu, D., and Chen, L., "Novel Mesoporous Si@C Microspheres as Anodes for Lithium-ion Batteries," Phys. Chem. Chem. Phys., 16(9), 4135-4142 (2014). https://doi.org/10.1039/c3cp54507e
  3. Yao, Y., Zhang, J., Xue, L., Huang, T., and Yu, A., "Carboncoated $SiO_2$ Nanoparticles as Anode Material for Lithium Ion Batteries," J. Power Sources, 196(23), 10240-10243 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.009
  4. Li, W., Li, Z. P., Kang, W., Tang, Y., Zhang, Z., Yang and X. Lee, C., "Hollow Nanospheres of Loosely Packed Si/$SiO_x$ Nanoparticles Encapsulated in Carbon Shells with Enhanced Performance as Lithium Ion Battery Anodes," J. Mater. Chem. A, 2, 12289-12295 (2014). https://doi.org/10.1039/C4TA02393E
  5. Huang, W. L., Ming Liang, K., and Ren Gu, S., "Effect of HCl in a Two-step Sol-gel Process using TEOS," J. Non-Cryst. Solids, 258(1-3), 234-238, (1999). https://doi.org/10.1016/S0022-3093(99)00551-7
  6. Homaunmir, V., Tohidi, S. H., Grigorya, G., and Shirazi, M. A. Z., "Dependence Properties of Sol-Gel Derived CuO@$SiO_2$ Nanostructure to Diverse Concentrations of Copper Oxide," J. Nanopart., 2013, 1-5 (2013).
  7. Ryu, J. H., Kim, J. W., Sung, Y.-E., Oh and S. M., "Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries," Electrochem. Solid-State Lett., 7(10), A306-A309 (2004). https://doi.org/10.1149/1.1792242
  8. Wang, H., Wu, P., Shi, H., Lou, F., Tang, Y., Zhou, T., and Lu, T., "Porous Si Spheres Encapsulated in Carbon Shells with Enhanced Anodic Performance in Lithium-ion Batteries," Mater. Res. Bull., 55, 71-77 (2014). https://doi.org/10.1016/j.materresbull.2014.04.018
  9. Martinez, J. R., Palomares-Sanchez, S., Ortega-Zarzosa, G., Ruiz, F., and Chumakov, Y., "Rietveld Refinement of Amorphous $SiO_2$ Prepared via Sol-gel Method," Mater. Lett., 60(29-30), 3526-3529 (2006). https://doi.org/10.1016/j.matlet.2006.03.044
  10. Xu, X., Wang, P., Qi, Z., Ming, H., Xu, J., Liu, H., and Ge, W., "Formation Mechanism of $Zn_2SiO_4$ Crystal and Amorphous $SiO_2$ in ZnO/Si System," J. Phys.: Condens. Matter, 15(1503), 607-613 (2003). https://doi.org/10.1088/0953-8984/15/40/L01
  11. Yao, Y., Zhang, J., Xue, L., Huang, T., and Yu, A., "Carboncoated $SiO_2$ Nanoparticles as Anode Material for Lithium Ion Batteries," J. Power Sources, 196(23), 10240-10243 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.009
  12. Park, J., Lee, K., Jeon, Y., Lim, S., and Lee, S., "Si/C Composite Lithium-ion Battery Anodes Synthesized using Silicon Nanoparticles from Porous Silicon," Electrochim. Acta, 133, 73-81 (2014). https://doi.org/10.1016/j.electacta.2014.04.045
  13. Du, Y., Hou, M., Zhou, D., Wang, Y., Wang, C., and Xia, Y., "Interconnected Sandwich Structure Carbon/Si-$SiO_2$/Carbon Nanospheres Composite as High Performance Anode Material for Lithium-ion Batteries," J. Energy Chem., 23(3), 315-323 (2014). https://doi.org/10.1016/S2095-4956(14)60153-4
  14. Shen, X., Mu, D., Chen, S., Xu, B., Wu, B., and Wu, F., "Si/mesoporous Carbon Composite as an Anode Material for Lithium Ion Batteries," J, Alloy. Compd., 552, 60-64 (2013). https://doi.org/10.1016/j.jallcom.2012.10.094
  15. Shen, L., Wang, Z., and Chen, L., "Carbon-coated Hierarchically Porous Silicon as Anode Material for Lithium Ion Batteries," RSC Adv., 4(29), 15314-15318 (2014). https://doi.org/10.1039/c4ra01255k
  16. Wu, P., Wang, H., Tang, Y., Zhou, Y., and Lu, T., "Threedimensional Interconnected Network of Graphene-wrapped Porous Silicon Spheres: In Situ Magnesiothermic-reduction Synthesis and Enhanced Lithium-storage Capabilities," ACS Appl. Mater, Interfaces, 6(5), 3546-3552 (2014). https://doi.org/10.1021/am405725u
  17. Iwamura, S., Nishihara, H., and Kyotani, T., "Effect of Buffer Size Around Nanosilicon Anode Particles for Lithium-ion Batteries," J. Phys, Chem. C, 116(10), 6004-6011 (2012). https://doi.org/10.1021/jp2093669
  18. Lei Gan, "A Facile Synthesis of Graphite/Silicon/Graphene Spherical Composite Anode for Lithium-ion Batteries," Electrochem. Acta, 104, 117-123 (2013). https://doi.org/10.1016/j.electacta.2013.04.083
  19. Guo, J., Chen, X., and Wang, C., "Carbon Scaffold Structured Silicon Anodes for Lithium-ion Batteries," J. Mater. Chem., 20(24), 5035-5040 (2010). https://doi.org/10.1039/c0jm00215a
  20. Shen, X., Mu, D., Chen, S., Wu, B., and Wu, F., "Enhanced Electrochemical Performance of ZnO-loaded/porous Carbon Composite as Anode Materials for Lithium Ion Batteries," ACS Appl. Mater. Interfaces, 5(8), 3118-3125 (2013). https://doi.org/10.1021/am400020n
  21. Wang, D., Gao, M., Pan, H., Wang, J., and Liu, Y., "High Performance Amorphous-Si@$SiO_x$/C Composite Anode Materials for Li-ion Batteries Derived from Ball-milling and in situ Carbonization," J. Power Sources, 256, 190-199 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.128
  22. Xie, J., Wang, G., Huo, Y., Zhang, S., Cao, G., and Zhao, X., "Nanostructured Silicon Spheres Prepared by a Controllable Magnesiothermic Reduction as Anode for Lithium Ion Batteries," Electrochim. Acta, 135, 94-100 (2014). https://doi.org/10.1016/j.electacta.2014.05.012
  23. Tu, J., Yuan, Y., Zhan, P., Jiao, H., Wang, X., Zhu, H., and Jiao, S., "Straightforward Approach toward $SiO_2$ Nanospheres and Their Superior Lithium Storage Performance," J. Phys. Chem. C, 118, 7357-7362 (2014). https://doi.org/10.1021/jp5011023
  24. Lu, Z., Zhang, L., and Liu, X., "Microstructure and Electrochemical Performance of Si-$SiO_2$-C Composites as the Negative Material for Li-ion Batteries," J. Power Sources, 195(13), 4304-4307 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.043
  25. Lv, P., Zhao, H., Wang, J., Liu, X., Zhang, T., and Xia, Q., "Facile Preparation and Electrochemical Properties of Amorphous $SiO_2$/C Composite as Anode Material for Lithium Ion Batteries," J. Power Sources, 237, 291-294 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.054
  26. Usui, H., Kono, T., and Sakaguchi, H., "Novel Composite Thick-film Electrodes Consisted of Zinc Oxide and Silicon for Lithium-ion Battery Anode," Int. J. Electrochem. Sc., 7, 4322-4334 (2012).
  27. Lee, J.-H., Kim, W.-J., Kim, J.-Y., Lim, S.-H., and Lee, S.-M., "Spherical Silicon/Graphite/Carbon Composites as Anode Material for Lithium-Ion Batteries," J. Power Sources, 176(1), 353-358 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.119
  28. Park, M.-S., Lee, Y.-J., Rajendran, S., Song, M.-S., Kim, H.-S., and Lee, J.-Y., "Electrochemical Properties of Si-Zn-C Composite as an Anode Material for Lithium-ion Batteries," J. Power Sources, 167, 520-523 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.096

Cited by

  1. 기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성 vol.57, pp.6, 2016, https://doi.org/10.9713/kcer.2019.57.6.861