• Title/Summary/Keyword: gate and drain bias

Search Result 138, Processing Time 0.037 seconds

The Study on Channel and Doping influence of MOSFET using TCAD (TCAD를 이용한 채널과 도핑 농도에 따른 MOSFET의 특성 분석)

  • 심성택;장광균;정정수;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.470-473
    • /
    • 2000
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade in response to the constant demand for increased speed, decreased power, and increased patting density. The devices are scaled down day by day. Therefore, This paper investigates how MOSFET structures influence on transport properties in according to change of channel length and bias and, observes impact ionization between the drain and the gate. This paper proposes three models, i.e., conventional MOSFET, LDD MOSFET and EPI MOSFET. The gate lengths are 0.3$\mu\textrm{m}$ 0.15$\mu\textrm{m}$, 0.075$\mu\textrm{m}$ and scaling factor is λ = 2. We have presented MOSFET's characteristics such as I-V characteristic, impart ionization, electric field, using the TCAD. We have analyzed the adaptive channel and doping influences

  • PDF

Electrical Properties of Boron-Doped Amorphous Silicon Ambipolar Thin Film Transistor (보론 도우핑된 비정질 실리콘을 이용한 쌍극 박막 트랜지스터의 전기적 특성)

  • Chu, Hye-Yong;Jang, Jin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.38-45
    • /
    • 1989
  • We have studied the electrical characteristics of the hydrogenated amorphous silicon (a-Si:H) ambiploar thin film transistors (TET'S)using 100ppm boron-doped a-Si:H as an active layer. The enhancement of drain current due to the double injection behavior has been observed in the p-channel operation of the TFT. The drain current decreases with time in streched exponential form when the gate voltage is positive. The result indicates that the dangling bonds created by electron accumulation show identical time dependence as the diffusion of hydrogen in the film. We observed the experimental evidence that the doping efficiency changes either when the gate bias is applied or when the light is illuminated on boron-doped a-Si:H.

  • PDF

Research on PAE of Doherty Amplifier Using Dual Bias Control and PBG Structure (이중 바이어스 조절과 PBG를 이용한 도허티 증폭기 전력 효율 개선에 관한 연구)

  • Kim Hyoung-Jun;Seo Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.707-712
    • /
    • 2006
  • In this paper, dual bias control circuit and PBG(Photonic BandGap) structure have been employed to improve PAE(Power Added Effciency) of the Doherty amplifier on Input power level. The gate and drain bias voltage has been controlled with the envelope of the input RF signal and PBG structure has been employed on the output port of Doherty amplifier. The proposed Doherty amplifier using dual bias controlled circuit and PBG has been improved the average PAE by 8%, $IMD_3$ by -5 dBc. And proposed Doherty amplifier has a high efficiency more than 30% on overall input power level, respectively.

Noise Modeling and Performance Evaluation in Nanoscale MOSFETs (나노 MOSFETs의 노이즈 모델링 및 성능 평가)

  • Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.82-87
    • /
    • 2020
  • The comprehensive and physics-based compact noise models for advanced CMOS devices were presented. The models incorporate important physical effects in nanoscale MOSFETs, such as the low frequency correlation effect between the drain and the gate, the trap-related phenomena, and QM (quantum mechanical) effects in the inversion layer. The drain current noise model was improved by including the tunneling assisted-thermally activated process, the realistic trap distribution, the parasitic resistance, and mobility degradation. The expression of correlation coefficient was analytically described, enabling the overall noise performance to be evaluated. With the consideration of QM effects, the comprehensive low frequency noise performance was simulated over the entire bias range.

CMOS Voltage down converter using the self temperature-compensation techniques (자동 온도 보상 기법을 이용한 CMOS 내부 전원 전압 발생기)

  • Son, Jong-Pil;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-7
    • /
    • 2006
  • An on chip voltage down converter (VDC) using the self temperature-compensation techniques is proposed. At a different gate bias voltage, PMOSFET shows different source to drain current characteristic according to the temperature variation. The proposed VDC can reduce its temperature dependency by the source to drain current ratio of two PMOSFET with different gate bias respectively. Proposed circuit is fabricated in Dongbu-anam $0.18{\mu}m$ CMOS process and experimental results show its temperature dependency of $-0.49mV/^{\circ}C$ and external supply dependency of 6mV/V. Total current consumption is only $1.1{\mu}A@2.5V$.

An Analytical Model for Deriving the 3-D Potentials and the Front and Back Gate Threshold Voltages of a Mesa-Isolated Small Geometry Fully Depleted SOI MOSFET

  • Lee, Jae Bin;Suh, Chung Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • For a mesa-isolated small geometry SOI MOSFET, the potentials in the silicon film, front, back, and side-wall oxide layers can be derived three-dimensionally. Using Taylor's series expansions of the trigonometric functions, the derived potentials are written in terms of the natural length that can be determined by using the derived formula. From the derived 3-D potentials, the minimum values of the front and the back surface potentials are derived and used to obtain the closed-form expressions for the front and back gate threshold voltages as functions of various device parameters and applied bias voltages. Obtained results can be found to explain the drain-induced threshold voltage roll-off and the narrow width effect of a fully depleted small geometry SOI MOSFET in a unified manner.

A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System

  • Yang, Jong-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.220-225
    • /
    • 2018
  • A class E power oscillator is demonstrated for 6.78-MHz wireless power transfer system. The oscillator is designed with a class E power amplifier to use an LC feedback network with a high-Q inductor between the input and the output. Multiple capacitors are used to minimize the variation of the oscillation frequency by capacitance tolerance. The gate and drain bias voltages with opposite characteristics to make the frequency shift of the oscillator are connected in a resistance distribution circuit located at the output of the low drop-out regulator and supplied bias voltages for class E operation. The measured output of the class E power oscillator, realized using the co-simulation, shows 9.2 W transmitted power, 6.98 MHz frequency and 86.5% transmission efficiency at the condition with 20 V $V_{DS}$ and 2.4 V $V_{GS}$.

Compact Current Model of Single-Gate/Double-Gate Tunneling Field-Effect Transistors

  • Yu, Yun Seop;Najam, Faraz
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2014-2020
    • /
    • 2017
  • A compact current model applicable to both single-gate (SG) and double-gate (DG) tunneling field-effect transistors (TFETs) is presented. The model is based on Kane's band-to-band tunneling (BTBT) model. In this model, the well-known and previously-reported quasi-2-D solution of Poisson's equation is used for the surface potential and length of the tunneling path in the tunneling region. An analytical tunneling current expression is derived from expressions of derivatives of local electric field and surface potential with respect to tunneling direction. The previously reported correction factor with three fitting parameters, compensating for superlinear onset and saturation current with drain voltage, is used. Simulation results of the proposed TFET model are compared with those from a technology computer-aided-design (TCAD) simulator, and good agreement in all operational bias is demonstrated. The proposed SG/DG-TFET model is developed with Verilog-A for circuit simulation. A TFET inverter is simulated with the Verilog-A SG/DG-TFET model in the circuit simulator; the model exhibits typical inverter characteristics, thereby confirming its effectiveness.

Dynamic Pixel Models for a-Si TFT-LCD and Their Implementation in SPICE

  • Wang, In-Soo;Lee, Gi-Chang;Kim, Tae-Hyun;Lee, Won-Jun;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.633-636
    • /
    • 2012
  • A dynamic analysis of an amorphous silicon (a-Si) thin film transistor liquid crystal display (TFT-LCD) pixel is presented using new a-Si TFT and liquid crystal (LC) capacitance models for a Simulation Program with Integrated Circuit Emphasis (SPICE) simulator. This dynamic analysis will be useful when predicting the performance of LCDs. The a-Si TFT model is developed to accurately estimate a-Si TFT characteristics of a bias-dependent gate to source and gate to drain capacitance. Moreover, the LC capacitance model is developed using a simplified diode circuit model. It is possible to accurately predict TFT-LCD characteristics such as flicker phenomena when implementing the proposed simulation model.

Temperature Measurement by $V_{GS}$ and $V_{DS}$ Method of Power VDMOSFET. (전력 VDMOSFT의 $V_{GS}$$V_{DS}$ 전압 검출에 의한 온도측정)

  • Kim, Jae-Hyun;Lee, Woo-Sun;Chung, Hun-Sang;Yoon, Byung-Do
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.775-778
    • /
    • 1987
  • Double-diffused metal oxide power semiconductor field effect transistors are used extensively in recent years in various circuit applications. The temperature variation of the drain current at a fixed bais shows both positive and negative resistance characteristics depending on the gate threhold voltage and gate-to source bias voltage. In this study, the decision method of the internal temperature measurement by $V_{GS}$ and $V_{DS}$ are presented.

  • PDF