• Title/Summary/Keyword: gaseous mercury

Search Result 36, Processing Time 0.027 seconds

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases (MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례)

  • Kim, Moon Hyeon;Nguyen, Thi Phuong Thao
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

Removal of Gaseous Elemental Mercury Using Reactive Species Produced by Dielectric Barrier Discharge (저온 플라즈마 반응에 의해 생성된 반응활성종을 이용한 원소상 수은의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Removal of elemental mercury $(Hg^0)$ with the reactive species produced from dielectric barrier discharge (DBD) was studied. We investigated the effect of operating parameters such as the applied voltage, residence time, initial concentration and co-existence of other pollutants. The removal of $(Hg^0)$ was significantly promoted by an increase in the applied voltage of the DBD reactor system. It is important to note that at the same input power, the removal efficiency of $(Hg^0)$ was much higher than that of NO gas. These results imply that if the DBD system is used as a NOx treatment facility, it is capable of removing $(Hg^0)$ simultaneously with NOx.

Identifications of Source Locations for Atmospheric Total Gaseous Mercury Using Hybrid Receptor Models (Hybrid receptor model을 이용한 대기 중 총 가스상 수은의 오염원 위치 추정 연구)

  • Lee, Yong-Mi;Yi, Seung-Muk;Heo, Jong-Bae;Hong, Ji-Hyoung;Lee, Suk-Jo;Yoo, Chul
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.971-981
    • /
    • 2010
  • The objectives of this study were to measure ambient total gaseous mercury (TGM) concentrations in Seoul, to analyze the characteristics of TGM concentration, and to identify of possible source areas for TGM using back-trajectory based hybrid receptor models like PSCF (Potential Source Contribution Function) and RTWC (Residence Time Weighted Concentration). Ambient TGM concentrations were measured at the roof of Graduate School of Public Health building in Seoul for a period of January to October 2004. Average TGM concentration was $3.43{\pm}1.17\;ng/m^3$. TGM had no notable pattern according to season and meteorological phenomena such as rainfall, Asian dust, relative humidity and so on. Hybrid receptor models incorporating backward trajectories including potential source contribution function (PSCF) and residence time weighted concentration (RTWC) were performed to identify source areas of TGM. Before hybrid receptor models were applied for TGM, we analysed sensitivities of starting height for HYSPLIT model and critical value for PSCF. According to result of sensitivity analysis, trajectories were calculated an arrival height of 1000 m was used at the receptor location and PSCF was applied using average concentration as criterion value for TGM. Using PSCF and RTWC, central and eastern Chinese industrial areas and the west coast of Korea were determined as important source areas. Statistical analysis between TGM and GEIA grided emission bolsters the evidence that these models could be effective tools to identify possible source area and source contribution.

Changes of Total Gaseous Mercury Concentration Levels and the Associated Environmental Conditions in Seoul, Korea (12년 차이를 두고 본 서울 한남동 지역 대기 중 수은의 분포특성과 환경요인의 비교)

  • Kim, Min-Young;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.237-247
    • /
    • 2001
  • The concentrations of gaseous mercury (Hg) determined between two different time periods of the late 1980s and the late 1990s were compared to account for the effects of changes between source/sink relationships of atmospheric Hg in an urban area. The Hg concentration levels were different remarkably between the two time periods due possibly to changes in source/sink relationships. The results showed that the Hg levels in the former period were measured to be 14.4${\pm}$9.56ngm$^{-3}$ (N = 2714), whereas those of the latter period were characterized by approximately three-fold decreased values of 5.34${\pm}$3.92 ngm$^{-3}$ (N=2576). Using two independent measurement data sets, we examined the patterns of Hg distribution at different time scales. When analyzed over 24 hour scale, these data sets exhibited two distinctive distribution patterns. The former period showed enhanced concentration levels during daytime, while the latter period showed relative depletion during daytime. The patterns of the two data sets were also examined over seasonal scale. The results of two different time periods consistently showed the occurrences of maximum seasonal values during winter. The former period was characterized by seasonal patterns of fuel consumption with excessive Hg levels during winter. Conversely, no distinctive trend was apparent for the latter period with slight changes in concentration levels across seasons. In order to analyze the factors affecting Hg distributions between two different periods, we conducted both correlation and factor analysis on both all data sets and on seasonally divided data groups. The results of these analyses consistently indicate that the Hg concentration levels for two different time periods are regulated by distinctive source processes that are characteristic of each period.

  • PDF

Measurements of Atmospheric Gaseous Elemental Mercury over the Yellow Sea during 2007-2008

  • Nguyen, Duc Luong;Kim, Jin-Young;Shim, Shang-Gyoo;Jin, Hyoun-Cher;Zhang, Xiao-Shan
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2009.10a
    • /
    • pp.255-258
    • /
    • 2009
  • This study shows that the $Hg^0$ background concentration over the Yellow Sea was generally higher than those observed over other seas/oceans around the world. $Hg^0$ concentrations measured in the urban stomophere were significantly higher than the background concentration in China. Elevated $Hg^0$ concentrations at Deokjeok Island in Korea were attributed to long-range transport of mercury from high emission areas in China.

  • PDF

Regional Distribution Characteristics of Total Gaseous Mercury in Air-Measurements from Urban and Mountainous Sites in Korea (대기 중 수은의 지역적 분포특성에 대한 비교연구-한반도의 도심과 산악지역을 중심으로)

  • 김민영;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • The spatial distribution characteristics of airborbe mercury(Hg) were investigated used its concentration data from six measurement sites selected to represent:(1) three terminal sites with heavy traffic loads in urban area, (2) one urban residential site and (3) two mountainous sites in Korea. The measurement data obtained during September 1997 through May 1998 indicated that the mean concentration of Hg from different study sites were comparably high with the mean values spanning from 5-9ng./㎥. The concentration from all those sites were systmatically high compared to those of most background sites around world or to other Korean sites investigaed previously. When results of correlation analysis between Hg and relevant parameters were compared among different study sites. temperature was most frequently found out to be in strong correlation with Hg concentrations. Results of factor analysis also indicated that Hg concentrations could be affected simultaneously by th factors affecting such parameters as ozone, temperature, ozone, carbon monoxide, and PM. The findings of enhanced Hg levels from Ji-Ri Mountain relative to terminal site suggest that is distributions may be rather homogeneous not enough to clearly distinguish areal differences and the associated source signatures between urban and rural area. The existence of systmatically high concentrations from all investigated sites also indicate that the impact of its source processes should be quite ubiquitous, while highly variable in relatively long term scale.

  • PDF

The Long-term Variation Patterns of Atmospheric Mercury in Seoul, Korea from 1997 to 2002 (서울시 대기 중 수은농도의 장기변동 특성 1997~2002)

  • 김민영;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • The concentration of gaseous elemental mercury (Hg) was measured concurrently with relevant environmental parameters from Yang-Jae monitoring station in Seoul during Sept. 1997 to June 2002. Although data collection was disrupted for certain periods, the grand mean concentration of Hg for this five year period was found at 5.32 $\pm$ 3.53 ng m$^{-3}$ (N = 27,170). Because of short resolution of data acquisition, we were able to examine the temporal variability of Hg at varying time scale. The diurnal variability of Hg, when investigated for each of those five years, indicated consistently the dominance of nighttime over daytime. If examined at seasonal scale, Hg level was systematically higher during winter/spring than summer/fall period. The results of this short-term variability were best explained by the combined effects of such factors as meteorological conditions (formation of inversion layer and seasonal changes) and anthropogenic source processes. However, examination of long-term variation Pattern was much more complicated to explain. Thus, extension of our study is needed to diagnose the future direction in long-term trend of Hg behavior.

Changes in Atmospheric Mercury Concentrations in Seoul, Korea and its Significance: A Case Study Between 1997 and 2002

  • Kim Ki-Hyun;Kim Min-Young;Hong SM
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.1-11
    • /
    • 2005
  • The concentration levels of gaseous elemental mercury (GEM) in ambient air have been investigated from a monitoring station located in Yang Jae district of Seoul, Korea for a long-term period covering 1997 through 2002. The mean concentration of Hg, if computed based on its hourly measurement data for this six-year period, was $5.32\pm3.53 ng m^{-3} (N = 27,170)$. The inspection of the diurnal distribution patterns indicated the presence of notably high concentration levels during nighttime relative to daytime (e.g., the mean hourly value as high as $9 ng m^{-3}$ in winter nighttime). When divided seasonally, the highest mean of $6.12 ng m^{-3}$ was also observed during winter followed by spring, fall, and summer. The results of our analysis confirmed the relative dominance of winter (seasonally) or nighttime (diurnally), while exhibiting a complicated trend on a long-term basis. Examination of our data over a different temporal scale consistently indicated that dynamic changes in Hg concentrations occurred through time in line with changes in the strength and diversity of the source processes. It is thus acknowledged that the presence of unusually high Hg levels is the consequence of intense man-made activities, while such signatures can vary in a competitive manner.

Emission Characteristics of Mercury and Heavy Metals from Coal and Waste Fuels (석탄과 폐기물 연료의 수은 및 중금속 배출 특성)

  • Ahmad, Tanveer;Park, Min;Keel, Sangin;Yun, Jinhan;Park, Jeong Min;Lee, Sang-Sup.
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • Waste can be utilized as secondary or alternative fuel. Solid recovered fuel (SRF) and dried sewage sludge were combusted to investigate heavy metal emissions from their combusiton in this study. Content of copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), lead (Pb), arsenic (As) and mercury (Hg) of coal, SRF and dried sewage sludge were determined, respectively. Concentrations of these heavy metals in the combustion flue gas were also determined. As a result, emissions of gas-phase Cu, Cr, Cd, Ni, Zn, Pb and As compounds were found to be little. However, a significant amount of gas-phase Hg was emitted from combustion of coal, SRF and dried sewage sludge. While SRF showed a high mercury oxidation percentage in its combustion flue gas, dried sewage sludge showed a high level of gaseous mercury emission.