• Title/Summary/Keyword: gas volume

Search Result 1,565, Processing Time 0.026 seconds

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether (Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도)

  • Lee, Eun-Ju;Yoo, Jung-Deok;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.230-236
    • /
    • 2017
  • Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal (무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가)

  • Yoon, Hee-Seung;Oh, Jong Hyun;Lee, Hyung Keun;Jeon, Jong-Ki;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.863-867
    • /
    • 2008
  • Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.

Fabrication of 13Cr-1.5Nb-Fe Alloy Powder and AC Magnetic Properties of the Sintered Magnetic Core (소결 13Cr-1.5Nb-Fe 합금의 교류 자기 특성)

  • 오환수;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2000
  • 13Cr-1.5Nb-Fe alloy powder prepared by water atomizing method is reduced with flowing hydrogen gas. The characteristics of a reduced alloy powder is investigated and magnetic cores formed by using the reduction power sintered in the vacuum of ∼10$\^$-5/ Torr. In order to study on the magnetic cores permeability and power loss in alternating magnetic field are also measured. The result of particle size distribution shows the paticle size is 70 ㎛ at volume fraction of 50 %. The saturation magnetization of the reduced alloy powder is 160 emu/g. The relative peak permeability (H$\_$a/=5Oe) of a magnetic core is 400 and the power loss (B$\_$m/=80G) 0.12 mW/cc at sintering temperature of 1,200 $\^{C}$, 10 ton/㎠ forming pressure, and 1 kHz.

  • PDF

Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths (에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구)

  • Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.

A Study on the Classification of Nursing Diagnoses by Student Nurses (간호학생이 내린 간호진단 분석에 관한 연구)

  • Min, Soon
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.3
    • /
    • pp.457-471
    • /
    • 1995
  • This research was done to promote improvement of practical application of nursing diagnoses and to improve the quality of nursing. The subjects of this research were 156 second year students of C junior nursing college who were giving adult patient care. The nursing diagnoses of 312 reports were analyzed using NANDA. In these case reports only nursing diagnoses were considered, of which there were a total of 982. In the data analysis the 9H of the nursing students' nursing diagnoses matched with 105 NANDA nursing diagnoses, Of these, the most frequent diagnoses were pain(165, 17.48%), anxiety(101, 10.70%), alteration in nutrition(83, 8.79%) , sleep disturbance (67, 7.10%), in activity intolerance (67, 7.10%), ineffective breathing pattern(51,5.40%). The etiology for the students' nursing diagnoses were compared with NANDA's nursing diagnoses by frequency. The most frequent etiology for the nursing diagnoses of pain was a biological etiology(50, 31%), for anxiety, situation crisis(58, 57.43%), for alteration in nutrition, indigesion(23, 27.71%), for sleep disturbance, external etiology(25, 37.32%), for activity intolerance, immobile position(22, 32.84%), for ineffective breathing pattern, pain(35, 68.63%), and for ,impaired physical mobility, pain(31, 65.96%). The most frequent etiology for constipation was inadquate digestion of water and cellulose (16, 34.78%), for fluid volume felicity, loss of body fluid (21, 52.50%), for impaired skin integrity, external etilogy(16, 43.24%), for impaired physical mobility, pain(22, 62.86%) , for knowledge deficits, cognition disturbance(9, 27.27%), for ineffective air way clearance, secretion obstruction(14, 48.27%) , for impaired gas exchange, loss of transport ability of blood oxygen(9, 37.50%) , and for powerlessness, therapy environment (5, 22.73%). The number of nursing diagnoses by pattern was exchange(16), moving(6), feeling(4), choosing(4), relating(3), communication(1), perceiving(1), knowing(1), valuing(1).

  • PDF

LASER-Induced Vapour Phase Hetero-Epitaxy of A^{III}\;B^V$ Type Opto-Electronics (LASER 광려기 기상반응에 의한 III-V 족계 광전재기의 Hetero-Epitaxy 고찰)

  • 우희조;박승민
    • Korean Journal of Crystallography
    • /
    • v.1 no.2
    • /
    • pp.99-104
    • /
    • 1990
  • The hetero-epitaxial growth of AmB v type onto-electronic material is attempted by means of the laser-induced chemical vapour deposition technique. The bimolecular gas phase reaction of trimethylgallium with ammonia on (001) alumina substrate for the epitaxy of gallium nitride is chosen as a model system. In this study, ArF exciter laser (193nm) is employed as a photon source. Marked difference is found in nucleation and in subsequent crystal incorporation between the doposits formed with and without the laser-irradiation. The surface coverage with isomorphically grown drystallites is pronounced upon "volume-excited" irradiation in comparison with the conventional thermal process. As to the crystal structure of the grown layers, the laser-induced deposits of GaN may be represented by either of the following two models: (001) plane of sapphire //y (001) plane of wurtzite-type GaN, OR (001) plane of sapphire//(001) plane of wurtzite-type-GaN (111) plane of twinned zinc blende-type GaN.

  • PDF

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell (직접탄소 연료전지에서 RDF 및 RPF의 전기화학반응 특성에 관한 실험적 연구)

  • Ahn, Seong Yool;Rhie, Young Hoon;Eom, Seong Yong;Sung, Yeon Mo;Moon, Cheor Eon;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.513-520
    • /
    • 2012
  • The electrochemical reaction of refuse derived fuel (RDF) and refuse plastic/paper fuel (RPF) was investigated in the direct carbon fuel cell (DCFC) system. The open circuit voltage (OCV) of RPF was higher than RDF and other coals because of its thermal reactive characteristic under carbon dioxide. The thermal reactivity of fuels was investigated by thermogravimetric analysis method. and the reaction rate of RPF was higher than other fuels. The behavior of all sample's potential was analogous in the beginning region of electrochemical reactions due to similar functional groups on the surface of fuels analyzed by X-ray Photoelectron Spectroscopy experiments. The potential level of RDF and RPF decreased rapidly comparing to coals in the next of the electrochemical reaction because the surface area and pore volume investigated by nitrogen gas adsorption tests were smaller than coals. This characteristic signifies the contact surface between electrolyte and fuel is restricted. The potential of fuels was maintained to the high current density region over 40 $mA/cm^2$ by total carbon component. The maximum power density of RDF and RPF reached up to 45~70% comparing to coal. The obvious improvement of maximum power density by increasing operating temperature was observed in both refuse fuels.

Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet

  • Peng, Guoyi;Okada, Kunihiro;Yang, Congxin;Oguma, Yasuyuki;Shimizu, Seiji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}=0.1$, and the computation result is compared with experimental data The result reveals that cavitation occurs initially at the entrance of orifice and bubble cloud develops gradually while flowing downstream along the shear layer. Developed bubble cloud breaks up and then sheds downstream periodically near the sheath exit. The pattern of cavitation cloud shedding evaluated by simulation agrees experimental one, and the possibility to capture the unsteadily shedding of cavitation clouds is demonstrated. The decay of core velocity in cavitating jet is delayed greatly compared to that in no-activation jet, and the effect of the nozzle sheath is demonstrated.