DOI QR코드

DOI QR Code

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether

Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도

  • Lee, Eun-Ju (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Yoo, Jung-Deok (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Lee, Byung-Chul (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 이은주 (한남대학교 화공신소재공학과) ;
  • 유정덕 (한남대학교 화공신소재공학과) ;
  • 이병철 (한남대학교 화공신소재공학과)
  • Received : 2017.01.08
  • Accepted : 2017.01.31
  • Published : 2017.04.01

Abstract

Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

약 303 K로부터 약 343 K의 온도 범위와 약 50 bar까지의 압력 범위에서 poly(ethylene glycol) dimethyl ether(PEGDME)에 녹는 이산화탄소($CO_2$)의 용해도를 측정하였다. 가변부피 투시창이 장착된 고압용 상평형 장치를 사용하여 온도를 변화시키면서 여러 가지 조성을 갖는 $CO_2+PEGDME$ 혼합물의 기포점 압력을 측정함으로써 PEGDME에서의 고압 $CO_2$의 용해도를 결정하였다. PEGDME의 분자량이 $CO_2$ 용해도에 미치는 영향을 관찰하기 위하여, 두 가지 종류의 분자량을 가진 PEGDME 시료에 대한 $CO_2$ 용해도를 비교하였다. 압력이 증가함에 따라 PEGDME에 대한 $CO_2$ 용해도는 증가하였으며 온도가 증가함에 따라 용해도는 감소하였다. 같은 온도와 압력에서 비교할 때, 분자량이 더 큰 PEGDME는 질량분율과 몰랄농도 기준으로 더 작은 $CO_2$ 용해도를 주었으나, 몰분율 기준으로는 더 큰 $CO_2$ 용해도를 주었다.

Keywords

References

  1. M. Ramdin, T. W. de Loos, and T. J. H. Vlugt, Ind. Eng. Chem. Res., 51, 8149-8177(2012). https://doi.org/10.1021/ie3003705
  2. Karadas, F., Atilhan, M. and Aparicio, S., "Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for $CO_2$ Capture and Natural Gas Sweetening," Energy Fuels, 24, 5817-5828(2010). https://doi.org/10.1021/ef1011337
  3. Lee, J. H. and Shim, S.-B., "Analysis of the Gas Feed Distribution at the Gas Sweetening Absorber Using CFD," Korean Chem. Eng. Res., 52(3), 314-320(2014). https://doi.org/10.9713/kcer.2014.52.3.314
  4. D'Alessandro, D. M., Smit, B. and Long, J. R., "Carbon Dioxide Capture: Prospects for New Materials," Angew. Chem., Int. Ed., 49, 6058-6082(2010). https://doi.org/10.1002/anie.201000431
  5. Khakharia, P., Huizinga, A., Jurado Lopez, C., Sanchez, C., de Miguel Mercader, F., Vlugt, T. J. H. and Goetheer, E., "Acid Wash Scrubbing as a Countermeasure for Ammonia Emissions from a Postcombustion $CO_2$ Capture Plant," Ind. Eng. Chem. Res., 53, 13195-13204(2014). https://doi.org/10.1021/ie502045c
  6. MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C. S., Williams, C., Shah, N. and Fennell, P., "An Overview of $CO_2$ Capture Technologies," Energy Environ. Sci., 3, 1645-1669(2010). https://doi.org/10.1039/c004106h
  7. "UOP SelexolTM Technology for Acid Gas Removal," UOP 5241F-01 (2009) (https://www.uop.com).
  8. Rayer, A. V., Henni, A. and Tontiwachwuthikul, P., "High Pressure Physical Solubility of Carbon Dioxide ($CO_2$) in Mixed Polyethylene Glycol Dimethyl Ethers (Genosorb 1753)," Can. J. Chem. Eng., 90, 576-583(2012). https://doi.org/10.1002/cjce.20615
  9. Schmidt, K. A. G. and Mather, A. E., "Solubility of Sulphur Dioxide in Mixed Polyethylene Glycol Dimethyl Ethers," Can. J. Chem. Eng., 79(6), 946-960(2001). https://doi.org/10.1002/cjce.5450790613
  10. Li, J., Mundhwa, M. and Henni, A., "Volumetric Properties, Viscosities, Refractive Indices and Surface Tensions for Aqueous Genosorb 1753 Solutions," J. Chem. Eng. Data, 52, 955-958(2007). https://doi.org/10.1021/je600547b
  11. Lee, B.-C. and Nam, S.-G., "High-Pressure Solubility of Carbon Dioxide in Pyrrolidinium-Based Ionic Liquids: [bmpyr][dca] and [bmpyr][$Tf_2N$]," Korean J. Chem. Eng., 32(3), 521-533(2015). https://doi.org/10.1007/s11814-014-0364-0
  12. Nam, S.-G. and Lee, B.-C., "Solubility of Carbon Dioxide in Ammonium-Based Ionic Liquids: Butyltrimethylammonium Bis(trifluoromethylsulfonyl)imide and Methyltrioctylammonium Bis(trifluoromethylsulfonyl)imide," Korean J. Chem. Eng., 30(2), 474-481(2013). https://doi.org/10.1007/s11814-012-0178-x
  13. Shin, E. K., Lee, B.-C. and Lim, J. S., "High-Pressure Solubilities of Carbon Dioxide in Ionic Liquids: 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide," J. Supercrit. Fluids, 45, 282-292(2008). https://doi.org/10.1016/j.supflu.2008.01.020
  14. Jung, Y.-H., Jung, J.-Y., Jin, Y.-R., Lee, B.-C. and Baek, I.-H., "Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with a Methanesulfonate Anion," J. Chem. Eng. Data, 57, 3321-3329(2012). https://doi.org/10.1021/je3001377
  15. Shin, E.-K. and Lee, B.-C., "High-Pressure Phase Behavior of Carbon Dioxide with Ionic Liquids: 1-Alkyl-3-methylimidazolium Trifluoromethanesulfonate," J. Chem. Eng. Data, 53(12), 2728-2734(2008). https://doi.org/10.1021/je8000443
  16. Lee, B.-C., "Solubility of Hydrogen Sulfide and Methane in Ionic Liquids: 1-Ethy-3-methylimidazolium Trifluoromethanesulfonate and 1-Butyl-1-methylpyrrolidinium Trifluoromethanesulfonate," Korean Chem. Eng. Res., 54(2), 213-222(2016). https://doi.org/10.9713/kcer.2016.54.2.213
  17. Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).
  18. Lei, Z., Dai, C. and Chen, B., "Gas Solubility in Ionic Liquids," Chem. Rev., 114, 1289-1326(2014). https://doi.org/10.1021/cr300497a