References
- Xiao, Z., Ma, C., Xu, P. and Lu, J. R., "Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium," PloS. One, 4, e5627(2009). https://doi.org/10.1371/journal.pone.0005627
- Xiao, Z. and Lu. J. R., "Strategies for Enhancing Fermentative Production of Acetoin: a Review," Biotechnol. Adv., 32, 492-503 (2014). https://doi.org/10.1016/j.biotechadv.2014.01.002
- Xu, H., Jia, S. R. and Liu, J. J., "Development of a Mutant Strain of Bacillus subtilis Showing Enhanced Production of Acetoin," Afr. J. Biotechnol., 10, 779-788(2011).
- Sun, J. N., Zhang, L. Y., Rao, B., Han, Y. B., Chu, J., Zhu, J. W., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 using Statistical Optimization and a Two-stage Agitation Speed Control Strategy," Biotechnol. Bioprocess. Eng., 17, 598-605(2012). https://doi.org/10.1007/s12257-011-0587-4
- Teixeira, R. M., Cavalheiro, D., Ninow, J. L. and Furigo, A., "Optimization of Acetoin Production by Hanseniaspora guilliermondii Using Experimental Design," Braz. J. Chem. Eng., 19, 181-186 (2002). https://doi.org/10.1590/S0104-66322002000200014
- Zhang, L. Y., Chen, S., Xie, H. B., Tian, Y. T. and Hu, K. H., "Efficient Acetoin Production by Optimization of Medium Components and Oxygen Supply Control Using a Newly Isolated Paenibacillus polymyxa CS107," J. Chem. Technol. Biotechnol., 87, 1551-1557(2012). https://doi.org/10.1002/jctb.3791
- Wang, D. X., Zhou, J. D., Chen, C., Wei, D., Shi, J. P., Jiang, B., Liu, P. F. and Hao, J., "R-Acetoin Accumulation and Dissimilation in Klebsiella pneumoniae," J. Ind. Microbiol. Biotechnol., 42, 1105-1115(2015). https://doi.org/10.1007/s10295-015-1638-1
- Zhang, L. J., Liu, Q., Ge, Y., Li, L., Gao, C., Xu, P. and Ma, C., "Biotechnological Production of Acetoin, a Bio-based Platform Chemical, from a Lignocellulosic Resource by Metabolically Engineered Enterobacter cloacae," Green. Chem., 18, 1560-1570 (2016). https://doi.org/10.1039/C5GC01638J
- Jung, M. Y., Mazumdar, S., Shin, S. H., Yang, K. S., Lee, J. and Oh, M. K., "Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene," Appl. Environ. Microbiol., 80, 6195-6203(2014). https://doi.org/10.1128/AEM.02069-14
- Shin, S. H., Kim, S., Kim, J. Y., Lee, S., Um, Y., Oh, M. K., Kim, Y. R., Lee, J. and Yang, K. S., "Complete Genome Sequencing of the 2,3-Butanediol-Producing Klebsiella pneumonia KCTC 2242," J. Bacteriol., 194, 2736-2737(2012). https://doi.org/10.1128/JB.00027-12
- Jun S. A., Kong S. W., Sang, B. I. and Um, Y., "Optimization of Culture Conditions for 1,3-propanediol Production from Glycerol Using Klebsiella pneumoniae," Korean Chem Eng Res., 47(6), 768-774(2009).
- Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., Tang, H. and Xu, P., "Enhanced 2,3-Butanediol Production by Klebsiella pneumoniae SDM," Appl. Microbiol. Biotechnol., 82, 49-57(2009). https://doi.org/10.1007/s00253-008-1732-7
- Jung, S. G., Jang, J. H., Kim, A. Y., Lim, M. C., Kim, B., Lee, J. and Kim, Y. R., "Removal of Pathogenic Factors from 2,3-Butanediol- Producing Klebsiella species by Inactivating Virulence-Related wabG gene," Appl. Microbiol. Biotechnol., 97, 1997-2007(2013). https://doi.org/10.1007/s00253-012-4284-9
- Izquierdo, L., Coderch, N., Pique, N., Bedini, E., Corsaro, M. M., Merino, S., Fresno, S., Tomas, J. M. and Regue, M., "The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence," J. Bacteriol., 185, 7213-7221 (2003). https://doi.org/10.1128/JB.185.24.7213-7221.2003
- Wang, Y., Tao, F. and Xu, P., "Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae," J. Biol. Chem., 289, 6080-6090(2014). https://doi.org/10.1074/jbc.M113.525535
- Xiao, Z. J. and Xu, P., "Acetoin Metabolism in Bacteria," Crit. Rev. Microbiol., 33, 127-140(2007). https://doi.org/10.1080/10408410701364604
- Hsu, J. L., Peng, H. L. and Chang, H. Y., "The ATP-binding Motif in AcoK is Required for Regulation of Acetoin Catabolism in Klebsiella pneumoniae CG43," Biochem. Biophys. Res. Commun., 376, 121-127(2008). https://doi.org/10.1016/j.bbrc.2008.08.103
- Sun, J. A., Zhang, L. Y., Rao, Ben., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 with Expression of a Water-Forming NADH oxidase," Bioresour. Technol., 119, 94-98(2012). https://doi.org/10.1016/j.biortech.2012.05.108
Cited by
- Studies on structure-function relationships of acetolactate decarboxylase from Enterobacter cloacae vol.8, pp.68, 2018, https://doi.org/10.1039/c8ra07379a
- Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries vol.24, pp.1, 2017, https://doi.org/10.1007/s12257-018-0346-x