DOI QR코드

DOI QR Code

Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae

대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산

  • Jang, Ji-Woong (Department of Chemical and Biological Engineering, Korea University) ;
  • Jung, Hwi-Min (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Duck Gyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
  • 장지웅 (고려대학교 화공생명공학과) ;
  • 정휘민 (고려대학교 화공생명공학과) ;
  • 김덕균 (고려대학교 화공생명공학과) ;
  • 오민규 (고려대학교 화공생명공학과)
  • Received : 2016.09.14
  • Accepted : 2016.12.20
  • Published : 2017.04.01

Abstract

Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.

아세토인(acetoin)은 식품과 화학산업에서 플랫폼 물질로 이용되며 산업적으로 다양한 응용이 가능한 물질이다. 본 연구에서는 대사공학(metabolic engineering)을 이용하여 아세토인의 생산량이 증가한 재조합 Klebsiella pneumoniae를 구축하였다. 우선 2,3-부탄디올(2,3-butanediol)생산을 위해 제작되었던 재조합 K. pneumoniae (KMK-05)에서 두 가지 2,3-butanediol dehydrogenase (budC, dhaD)를 유전체에서 제거하여 아세토인 생산량을 늘리고, 전사인자 중 하나인 AcoK를 제거하여 아세토인을 분해하는 효소의 발현량을 줄였다. 그리고 NADH oxidase를 발현시켜 세포 내 산화 환원 균형(redox balance)을 맞춰 대사흐름을 개선하였다. 이렇게 대사공학을 통해 구축된 재조합 Klebsiella pneumoniae(KJW-03-nox)로 아세토인 생산량과 수율을 높였고, 36시간 동안의 유가식 배양을 진행하여 51 g/L의 아세토인 농도와 최대 생산성 2.6 g/L/h을 달성하였다.

Keywords

References

  1. Xiao, Z., Ma, C., Xu, P. and Lu, J. R., "Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium," PloS. One, 4, e5627(2009). https://doi.org/10.1371/journal.pone.0005627
  2. Xiao, Z. and Lu. J. R., "Strategies for Enhancing Fermentative Production of Acetoin: a Review," Biotechnol. Adv., 32, 492-503 (2014). https://doi.org/10.1016/j.biotechadv.2014.01.002
  3. Xu, H., Jia, S. R. and Liu, J. J., "Development of a Mutant Strain of Bacillus subtilis Showing Enhanced Production of Acetoin," Afr. J. Biotechnol., 10, 779-788(2011).
  4. Sun, J. N., Zhang, L. Y., Rao, B., Han, Y. B., Chu, J., Zhu, J. W., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 using Statistical Optimization and a Two-stage Agitation Speed Control Strategy," Biotechnol. Bioprocess. Eng., 17, 598-605(2012). https://doi.org/10.1007/s12257-011-0587-4
  5. Teixeira, R. M., Cavalheiro, D., Ninow, J. L. and Furigo, A., "Optimization of Acetoin Production by Hanseniaspora guilliermondii Using Experimental Design," Braz. J. Chem. Eng., 19, 181-186 (2002). https://doi.org/10.1590/S0104-66322002000200014
  6. Zhang, L. Y., Chen, S., Xie, H. B., Tian, Y. T. and Hu, K. H., "Efficient Acetoin Production by Optimization of Medium Components and Oxygen Supply Control Using a Newly Isolated Paenibacillus polymyxa CS107," J. Chem. Technol. Biotechnol., 87, 1551-1557(2012). https://doi.org/10.1002/jctb.3791
  7. Wang, D. X., Zhou, J. D., Chen, C., Wei, D., Shi, J. P., Jiang, B., Liu, P. F. and Hao, J., "R-Acetoin Accumulation and Dissimilation in Klebsiella pneumoniae," J. Ind. Microbiol. Biotechnol., 42, 1105-1115(2015). https://doi.org/10.1007/s10295-015-1638-1
  8. Zhang, L. J., Liu, Q., Ge, Y., Li, L., Gao, C., Xu, P. and Ma, C., "Biotechnological Production of Acetoin, a Bio-based Platform Chemical, from a Lignocellulosic Resource by Metabolically Engineered Enterobacter cloacae," Green. Chem., 18, 1560-1570 (2016). https://doi.org/10.1039/C5GC01638J
  9. Jung, M. Y., Mazumdar, S., Shin, S. H., Yang, K. S., Lee, J. and Oh, M. K., "Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene," Appl. Environ. Microbiol., 80, 6195-6203(2014). https://doi.org/10.1128/AEM.02069-14
  10. Shin, S. H., Kim, S., Kim, J. Y., Lee, S., Um, Y., Oh, M. K., Kim, Y. R., Lee, J. and Yang, K. S., "Complete Genome Sequencing of the 2,3-Butanediol-Producing Klebsiella pneumonia KCTC 2242," J. Bacteriol., 194, 2736-2737(2012). https://doi.org/10.1128/JB.00027-12
  11. Jun S. A., Kong S. W., Sang, B. I. and Um, Y., "Optimization of Culture Conditions for 1,3-propanediol Production from Glycerol Using Klebsiella pneumoniae," Korean Chem Eng Res., 47(6), 768-774(2009).
  12. Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., Tang, H. and Xu, P., "Enhanced 2,3-Butanediol Production by Klebsiella pneumoniae SDM," Appl. Microbiol. Biotechnol., 82, 49-57(2009). https://doi.org/10.1007/s00253-008-1732-7
  13. Jung, S. G., Jang, J. H., Kim, A. Y., Lim, M. C., Kim, B., Lee, J. and Kim, Y. R., "Removal of Pathogenic Factors from 2,3-Butanediol- Producing Klebsiella species by Inactivating Virulence-Related wabG gene," Appl. Microbiol. Biotechnol., 97, 1997-2007(2013). https://doi.org/10.1007/s00253-012-4284-9
  14. Izquierdo, L., Coderch, N., Pique, N., Bedini, E., Corsaro, M. M., Merino, S., Fresno, S., Tomas, J. M. and Regue, M., "The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence," J. Bacteriol., 185, 7213-7221 (2003). https://doi.org/10.1128/JB.185.24.7213-7221.2003
  15. Wang, Y., Tao, F. and Xu, P., "Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae," J. Biol. Chem., 289, 6080-6090(2014). https://doi.org/10.1074/jbc.M113.525535
  16. Xiao, Z. J. and Xu, P., "Acetoin Metabolism in Bacteria," Crit. Rev. Microbiol., 33, 127-140(2007). https://doi.org/10.1080/10408410701364604
  17. Hsu, J. L., Peng, H. L. and Chang, H. Y., "The ATP-binding Motif in AcoK is Required for Regulation of Acetoin Catabolism in Klebsiella pneumoniae CG43," Biochem. Biophys. Res. Commun., 376, 121-127(2008). https://doi.org/10.1016/j.bbrc.2008.08.103
  18. Sun, J. A., Zhang, L. Y., Rao, Ben., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 with Expression of a Water-Forming NADH oxidase," Bioresour. Technol., 119, 94-98(2012). https://doi.org/10.1016/j.biortech.2012.05.108

Cited by

  1. Studies on structure-function relationships of acetolactate decarboxylase from Enterobacter cloacae vol.8, pp.68, 2018, https://doi.org/10.1039/c8ra07379a
  2. Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries vol.24, pp.1, 2017, https://doi.org/10.1007/s12257-018-0346-x