• Title/Summary/Keyword: gas separations

Search Result 31, Processing Time 0.021 seconds

Expanding the Limits of Membrane-Based Gas Separation Materials

  • Koros, William J.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.21-22
    • /
    • 1995
  • Gas separation science and technology is among the most rapidly growing areas involving membrane-based processes. Nitrogen enrichment of air, hydrogen recovery from a broad array of stream types, and removal of acid gases from natural gases are typical of the applications in this field. Great progress has been made in the discovery of guidelines optimization of polymer structures with simultaneously high permeabilities and selectivities for these important gas pairs. The development of thin-skinned asymmetric hollow fibers have also provided structures with extremely high permeation fluxes. Especially in the case of O$_{2}$/N$_{2}$ separations, the rate of improvements in new polymeric materials for gas separations appears to be slowing to a halt. Evidence will be presented, however, that the practical tradeoff between membrane permeability and selectivity has not been reached.

  • PDF

Gas Separation Membranes - Current Status

  • Puri, Pushpinder S.
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 1996
  • Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical, and allied industries. Following their successful commercialization in the late seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications. Numerous systems are in operation today to: recover hydrogen from other purge gas and hydrocarbon streams; adjust the $H_{2}/CO$ ratio in syngas; remove $CO_{2}$ from natural gas; recover helium; dry gas streams; and separate air. Lower cost, ease of operation, operational flexibility and portability are a few of the reasons membrane-based systems are chosen over absorption and cryogenic-based separations in certain applications.

  • PDF

Membrane Separations and Energy Savings

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.33-43
    • /
    • 1994
  • It is the purpose of this paper to review the recent developments and future trends in various membrane processes, which will result in energy savings. Historically, there was a long period of academic curiosity in membrane research covering from gas separation to reverse osmosis. With advent of asymmetric membrane technology, many membrane processes proved to be energy efficient than the conventional separation methods. Thus, membrane technology has gained wide acceptance from many sectors of industry. The commercial sale of membranes is still modest compared to the major technologies, but it is one of the fastest growing industries. Recently the U.S.Department of Energy conducted a study (1) to evaluate and prioritize research needs in the membrane separation industry in order to foster and better support the deveolpment of energy-efficient new technologies. The National Science Foundation (U.S.A.) did also do a similar investigation. Both agencies have arrived neary at the same conclusion, that is, membrane separations can offer many new and alternative methods of separations that are more energy efficient than existing processes. This paper is largely based on these findings.

  • PDF

MEMBRANE-BASED GAS AND VAPOR SEPARATIONS

  • Wijmans, Hans
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.3-6
    • /
    • 2004
  • Industrial gas separation by membranes began in 1980 with the introduction of hollow-fiber polysulfone membrane systems by Permea, at that time a division of Monsanto. This first application was the recovery of hydrogen from ammonia reactor purge gas and was soon followed by the generation of nitrogen from air. Today, membrane gas separation ranks second behind cryogenic distillation in terms of nitrogen production, and this application has drawn the industrial gas companies into the membrane field.(omitted)

  • PDF

Novel Polypyrrole composite membrane with high gas selectivity and permeability

  • Son, Won-Il;Kim, Byoung-Sik;Hong, Jae-Min
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.147-152
    • /
    • 2004
  • Gas separation membrane technology is useful for a variety of applications [1, 2]. such as hydrogen recovery from reactor purge gas, nitrogen and oxygen enrichment, water vapor removal from air, stripping of carbon dioxide from natural gas. etc. Although membrane separations are attractive because of low energy costs and simple operation, low permeabilities and/or selectivity often limit membrane applications [3, 4].(omitted)

  • PDF

Intrinsic Permeation Properties of Graphene Oxide Membranes for Gas and Ion Separations (그래핀옥사이드 멤브레인의 기체 및 이온 투과 특성)

  • Kim, Hyo Won
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Graphene oxide (GO) has been considered as a promising membrane material, because of its easy processability and distinct properties, including controllable pore size distribution and diffusion channels. Particularly, the feasibility has been proposed a number of simulation results and proof-of-concept experimental approaches towards GO membranes. That is, GO already shows many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness and the ability to generate nanopores in the two-dimensional lattices or to create slit-like nanochannels between adjacent sheets. This review will be addressed the important experimental development in GO-based membranes for gas and ion separations, emphasizing on intrinsic transport phenomena, and critical issues for practical applications.

Gas Separations of Natural Zeolite by Chemical Treatments (화학처리에 의한 천연 Zeolite의 Gas 분리)

  • Im, Goeng
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • In the our country, especially in Yeongil and Wolsung area, abundant authigenic zeolites are found from the tuffaceous sediments and volcanic rocks of Miocene age showing wide variation in their mineralogy and abundance from horizon to horizon. The principal zeolite species identified are clinopti-lolite. mordenite. heulandite. ferrierite, and erionite. etc. Zeolite minerals are widely used in many countries in the following applications; (a) in air separation adsorption processes; (b)as desiccants; (c)in inorganic building materials; (d)in papermaking; (e)in fertilizers; (f)as soilconditioners-this application is based upon the ability of the zeolite to ion exchange with soil nutrients; (g)in the treatment of radioactive wastes; and (h)as adsorbents for toxic gases, etc. In the present paper, using natural zeolite mordenite treated with IN hydrochloric acid or IN sodium chloride solution as column packings, separation characteristics of argon, nitrogen, carbon monoxide, and methane gases have been studied by gas chromatography. By the use of mordenite treated with hydrochloric acid solution, the tailing peak of methane showed from untreated mordenite was satisfactorily reduced, although it was difficult to separate it from carbon monoxide with a column activated at $300^{\circ}C$. Using a column activated at $350^{\circ}C$, methane could be separated from carbon monoxide easily but only carbon monoxide eluted as a bad defined peak. Mordenite treated with sodium chloride solution was generally similar to chromatograms obtained by using the untreated mordenite. Both the above chemical treatments of mordenite had little effect on the separations of argon and nitrogen. The separations and the HETP values obtained from natural zeolite mordenite treated with continuously hydrochloric acid and sodium chloride solutions were almost identical with those obtained with synthetic molecular sieve 5A zeolite. On the other hand, the efficiency of column was good in the range 20~3Oml/min of the carrier helium gas rate.

  • PDF

Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations (가소화 저항 향상을 위한 기체분리막 소재 개발 동향)

  • Jo, Jin Hui;Chi, Won Seok
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.385-394
    • /
    • 2020
  • In the gas separation process, the separation membranes have to not only show high gas transport and selectivity but also exhibit exceptional stability at high temperature and pressure. However, when the polymeric membranes (particularly, glassy polymers) are exposed to the condensable gases (i.e., CO2, H2S, hydrocarbon, etc.), the polymer chains are prone to swell, leading to low stability. As a result, the plasticization behavior reduces the gas selectivity in the separation of mixture gases at high pressures and thus results in limited applications to the separation processes. To address these issues, many strategies have been studied such as thermal treatment, polymer blending, thermally rearrangement, mixed-matrix membranes, cross-linking, etc. In this review, we will understand the plasticization behavior and suggest potential methods based on the previously reported studies.

Separation of Amino Acid Enantiomers by Gas Chromatography II (가스크로마토그라피에 의한 아미노산 광학이성체의 분리 II)

  • 박만기;강종성;유재하;박정일;전동원
    • YAKHAK HOEJI
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 1986
  • The enantiomers of five amino acids (alanine, valine, threonine, leucine and phenylalanine) could be separated by gas chromatography with optically active (S)-5-isopropyll-$N^3$-phenyl-2-thiohydantoinic stationary phase, which prepared from L-valine and phenylisothiocyanate. Gas chromatographic separations on methylesterificated and N-trifluoroacetylated amino acids have been conducted in isothermal at several column temperatures (180~190, 200, $210^{\circ}C$). The separation factors were 1.29 (alanine, $190^{\circ}C$), 1.35 (valine, $190^{\circ}C$), 1.33 (threonine, $190^{\circ}C$), 1.17 (leucine, $190^{\circ}C$) and 1.05 (phenylalanine, $190^{\circ}C$) and D-isomers eluted prior to L-isomers in every instance. The result of this experiment shows that this stationary phase can be used for the separation of the other amino acids enantiomers.

  • PDF