Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no.2020R1I1A2073243). This sturdy was also supported by 2020 Research Grant from Kangwon National University.
References
- D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, "Preparation and characterization of graphene oxide paper", Nature, 448, 457-460 (2007). https://doi.org/10.1038/nature06016
- W. Gao, "The chemistry of graphene oxide", in Graphene oxide, pp. 61-95, Springer (2015).
- B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131 (2014).
- J. Kim, L. J. Cote, F. Kim, W. Yuan, K. S. Shull, and J. Huang, "Graphene oxide sheets at interfaces", J. Am. Chem. Soc., 132, 8180-8186 (2010). https://doi.org/10.1021/ja102777p
- J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and Kim, S. O., "Graphene oxide liquid crystals", Angew. Chem., 123, 3099-3103 (2011). https://doi.org/10.1002/ange.201004692
- M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S., Noro, T. Yamada, H. Kitagawa, and S. Hayami, "Graphene oxide nanosheet with high proton conductivity", J. Am. Chem. Soc., 135, 8097-8100 (2013). https://doi.org/10.1021/ja401060q
- S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, "Graphene oxide as a practical solution to high sensitivity gas sensing", J. Phys. Chem. C, 117, 10683-10690 (2013). https://doi.org/10.1021/jp3085759
- Y. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, "Super gas barrier and selectivity of graphene oxide polymer multilayer thin films", Adv. Mater., 25, 503-508 (2013). https://doi.org/10.1002/adma.201202951
- S. Eigler and A. Hirsch, "Chemistry with graphene and graphene oxide-challenges for synthetic chemists", Angew. Chem. Int. Ed., 53, 7720-7738 (2014). https://doi.org/10.1002/anie.201402780
- R. R. Amirov, J. Shayimova, Z. Nasirova, and A. M. Dimiev, "Chemistry of graphene oxide. Reactions with transition metal cations", Carbon, 116, 356-365 (2017). https://doi.org/10.1016/j.carbon.2017.01.095
- H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91-95 (2013). https://doi.org/10.1126/science.1236098
- H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, and B. D. McCloskey, "Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts", Nature Catalysis, 1, 282-290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- R. Nair, H. A. Wup, P. N. Jayatami, L. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442-444 (2012). https://doi.org/10.1126/science.1211694
- H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Gleason, B. D. Freeman, and H. B. Park, "High-performance CO2-philic graphene oxide membranes under wet-conditions", Chem. Commun., 50, 13563-13566 (2014). https://doi.org/10.1039/c4cc06207h
- R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343, 752-754 (2014). https://doi.org/10.1126/science.1245711
- H. W. Yoon, T. H. Lee, C. M. Doherty, T. H. Choi, J. S. Roh, H. W. Kim, Y. H. Cho, S-H. Do, B. D. Freeman, and H. B. Park, "Origin of CO2-philic sorption by graphene oxide layered nanosheets and their derivatives", J. Phys. Chem. Lett., 11, 2356-2362 (2020). https://doi.org/10.1021/acs.jpclett.0c00204
- K. M. Cho, H.-J. Lee, Y. T. Nam, Y-J. Kim, C. Kim, K. M. Kang, C. A. R. Torres, D. W. Kim, and H. T. Jung, "Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons", ACS Applied Materials & Interfaces, 11, 27004-27010 (2019). https://doi.org/10.1021/acsami.9b09037
- H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold", Adv. Funct. Mater., 28, 1803172 (2018). https://doi.org/10.1002/adfm.201803172
- J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, and D. W. Kim, "Scalable fabrication of deoxydenated graphene oxide nanofiltration membrane by continuous slot-die coating", J. Membr. Sci., 612, 118454 (2020). https://doi.org/10.1016/j.memsci.2020.118454
- Y. Choi, S.-S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195-12202 (2020). https://doi.org/10.1021/acsnano.0c05902
- B. C. Brodie, "XIII. On the atomic weight of graphite", Philosophical Transactions of the Royal Society of London, 149, 249-259 (1859). https://doi.org/10.1098/rstl.1859.0013
- D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806-4814 (2010). https://doi.org/10.1021/nn1006368
- J. Chen, B. Yao, C. Li, and G. Shi, "An improved Hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225-229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
- B. Brodie, "Note sur un nouveau procede pour la purification et la desagregation du graphite", Ann. Chim. Phys., 45, 351-353 (1855).
- G. Bettendorf, "Zur geschichte der endokrinologie und reproduktionsmedizin: 256 biographien und berichte", Springer-Verlag (2013).
- M. Berthelot, "Recherches sur les etats du carbone", Ann. Chim. Phys. 4e serie, 19, 392-426 (1870).
- V. Kohlschutter and P. Haenni, "Zur kenntnis des graphitischen kohlenstoffs und der graphitsaure", Z. Anorg. Allg. Chem., 105, 121-144 (1919). https://doi.org/10.1002/zaac.19191050109
- U. Hofmann and A. Frenzel, "Quellung von graphit und die bildung von graphitsaure", Ber. Dtsch. Chem. Ges. (A and B Series), 63, 1248-1262 (1930). https://doi.org/10.1002/cber.19300630543
- W. S. Hummers Jr. and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958). https://doi.org/10.1021/ja01539a017
- T. Nakajima, A. Mabuchi, and R. Hagiwara, "A new structure model of graphite oxide", Carbon, 26, 357-361 (1988). https://doi.org/10.1016/0008-6223(88)90227-8
- T. Nakajima and Y. Matsuo, "Formation process and structure of graphite oxide", Carbon, 32, 469-475 (1994). https://doi.org/10.1016/0008-6223(94)90168-6
- D. Hadzi and A. Novak, "Infra-red spectra of graphitic oxide", Trans. Faraday Soc., 51, 1614-1620 (1955). https://doi.org/10.1039/TF9555101614
- T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dekany, "Evolution of surface functional groups in a series of progressively oxidized graphite oxides", Chem. Mater., 18, 2740-2749 (2006). https://doi.org/10.1021/cm060258+
- F. A. de La Cruz and J. Cowley, "Structure of graphitic oxide", Nature, 196, 468-469 (1962). https://doi.org/10.1038/196468a0
- L. Staudenmaier, "Verfahren zur darstellung der graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31, 1481-1487 (1898). https://doi.org/10.1002/cber.18980310237
- U. Hofmann, A. Frenzel, and E. Csalan, "Die konstitution der graphitsaure und ihre reaktionen", Justus Liebigs Annalen der Chemie, 510, 1-41 (1934). https://doi.org/10.1002/jlac.19345100102
- G. Ruess, "Uber das graphitoxyhydroxyd (graphitoxyd)", Monatshefte fur Chemie und verwandte Teile anderer Wissenschaften, 76, 381-417 (1947). https://doi.org/10.1007/BF00898987
- U. Hofmann and R. Holst, "Uber die Saurenatur und die Methylierung von Graphitoxyd", Ber. Dtsch. Chem. Ges. (A and B Series), 72, 754-771 (1939). https://doi.org/10.1002/cber.19390720417
- M. Mermoux, Y. Chabre, and A. Rousseau, "FTIR and 13C NMR study of graphite oxide", Carbon, 29, 469-474 (1991). https://doi.org/10.1016/0008-6223(91)90216-6
- W. Scholz and H. Boehm, "Betrachtungen zur struktur des graphitoxids", Z. Anorg. Allg. Chem., 369, 327-340 (1969). https://doi.org/10.1002/zaac.19693690322
- W. Cai, R. D. Piner, F. J. Stadermsn, S. J. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stollrt, J. An, D. Chen, and R. S. Ruoff, "Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide", Science, 321, 1815-1817 (2008). https://doi.org/10.1126/science.1162369
- J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets", Nature, 446, 60-63 (2007). https://doi.org/10.1038/nature05545
- K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, 490, 192-200 (2012). https://doi.org/10.1038/nature11458
- H. B. Park, "Gas separation membranes", Encyclopedia of Membrane Science and Technology, 1-32 (2013).
- H. B. Park and Y. M. Lee, "Polymeric membrane materials and potential use in gas separation, in Advanced membrane technology and applications", pp. 633-669, John Wiley & Sons, Inc. (2008).
- R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393-1411 (2002). https://doi.org/10.1021/ie0108088
- W. J. Koros, and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1-80 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes: A topical report", National Energy Technology Laboratory, Pittsburgh, PA, Morgantown (2003).
- M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902-1905 (1999). https://doi.org/10.1126/science.285.5435.1902
- R. M. De Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710-1711 (1998). https://doi.org/10.1126/science.279.5357.1710
- D. M. Sterescu, L. Bolhuis-Versteeg, N. F. A. van der Vegt, D. F. Stamatialis, and M. Wessling, "Novel gas separation membranes containing covalently bonded fullerenes", Macromol. Rapid Commun., 25, 1674-1678 (2004). https://doi.org/10.1002/marc.200400296
- B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62-65 (2004). https://doi.org/10.1126/science.1092048
- J. K. Holt, H. G. Park, Y. Wang, M. Staderman, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037 (2006). https://doi.org/10.1126/science.1126298
- D.-e. Jiang, V. R. Cooper, and S. Dai, "Porous graphene as the ultimate membrane for gas separation", Nano Lett., 9, 4019-4024 (2009). https://doi.org/10.1021/nl9021946
- S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728-732 (2012). https://doi.org/10.1038/nnano.2012.162
- H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, B. Yu, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95-98 (2013). https://doi.org/10.1126/science.1236686
- H. B. Park, H. W. Yoon, and Y. H. Cho, "Graphene oxide membrane for molecular separation", Graphene Oxide: Fundamentals and Applications, 296 (2016).
- O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials", Small, 6, 711-723 (2010). https://doi.org/10.1002/smll.200901934
- Y. H. Cho, H. W. Kim, H. D. Lee, J. E. Shin, B. M. Yoo, and H. B. Park, "Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited", J. Membr. Sci., 544, 425-435 (2017). https://doi.org/10.1016/j.memsci.2017.09.043
- J. S. Roh, T. H. Choi, T. H. Lee, H. W. Yoon, J. Kim, H. W. Kim, and H. B. Park, "Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing", J. Phys. Chem. Lett., 10, 7725-7731 (2019). https://doi.org/10.1021/acs.jpclett.9b03082
- K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, "A graphene oxide membrane with highly selective molecular separation of aqueous organic solution", Angew. Chem., 126, 7049-7052 (2014). https://doi.org/10.1002/ange.201401061
- Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693-3700 (2013). https://doi.org/10.1002/adfm.201202601
- D. W. Boukhvalov, M. I. Katsnelson, and Y.-W. Son, "Origin of anomalous water permeation through graphene oxide membrane", Nano Lett., 13(8), 3930-3935 (2013). https://doi.org/10.1021/nl4020292
- G. M. Geise, H. B. Park, A. C. Saglea, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130-138 (2011). https://doi.org/10.1016/j.memsci.2010.11.054