DOI QR코드

DOI QR Code

Intrinsic Permeation Properties of Graphene Oxide Membranes for Gas and Ion Separations

그래핀옥사이드 멤브레인의 기체 및 이온 투과 특성

  • Kim, Hyo Won (Department of Advanced Materials Engineering, Kangwon National University)
  • Received : 2022.01.03
  • Accepted : 2022.01.18
  • Published : 2022.02.28

Abstract

Graphene oxide (GO) has been considered as a promising membrane material, because of its easy processability and distinct properties, including controllable pore size distribution and diffusion channels. Particularly, the feasibility has been proposed a number of simulation results and proof-of-concept experimental approaches towards GO membranes. That is, GO already shows many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness and the ability to generate nanopores in the two-dimensional lattices or to create slit-like nanochannels between adjacent sheets. This review will be addressed the important experimental development in GO-based membranes for gas and ion separations, emphasizing on intrinsic transport phenomena, and critical issues for practical applications.

그래핀옥사이드는 우수한 물리적 특성 및 가공성으로 멤브레인 소재로 각광받고 있다. 특히, 이론적 예측과 실험적인 접근을 통해 그래핀옥사이드의 원자 수준의 얇은 두께, 뛰어난 기계적 강도, 높은 수준의 내화학성, 기공 생성이 가능한 2차원 구조 또는 기체 확산 유로 생성이 가능한 적층구조 등 멤브레인 소재로서 매우 유리한 특성들을 보유하고 있음이 밝혀졌다. 또한 그래핀옥사이드에서의 분자 투과 거동은 적층된 그래핀옥사이드 사이의 채널 크기에 따라 영향을 받는다는 것이 발견되었다. 그 후, 이러한 특성을 응용하여 그래핀옥사이드를 멤브레인 소재로 활용하기 위해 많은 연구가 집중적으로 진행되고 있다. 본 총설에서는 그래핀옥사이드의 고유 특성을 기반으로 멤브레인 분야로의 응용 가능성에 대하여 논하고자 한다.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no.2020R1I1A2073243). This sturdy was also supported by 2020 Research Grant from Kangwon National University.

References

  1. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, "Preparation and characterization of graphene oxide paper", Nature, 448, 457-460 (2007). https://doi.org/10.1038/nature06016
  2. W. Gao, "The chemistry of graphene oxide", in Graphene oxide, pp. 61-95, Springer (2015).
  3. B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131 (2014).
  4. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. S. Shull, and J. Huang, "Graphene oxide sheets at interfaces", J. Am. Chem. Soc., 132, 8180-8186 (2010). https://doi.org/10.1021/ja102777p
  5. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and Kim, S. O., "Graphene oxide liquid crystals", Angew. Chem., 123, 3099-3103 (2011). https://doi.org/10.1002/ange.201004692
  6. M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S., Noro, T. Yamada, H. Kitagawa, and S. Hayami, "Graphene oxide nanosheet with high proton conductivity", J. Am. Chem. Soc., 135, 8097-8100 (2013). https://doi.org/10.1021/ja401060q
  7. S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, "Graphene oxide as a practical solution to high sensitivity gas sensing", J. Phys. Chem. C, 117, 10683-10690 (2013). https://doi.org/10.1021/jp3085759
  8. Y. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, "Super gas barrier and selectivity of graphene oxide polymer multilayer thin films", Adv. Mater., 25, 503-508 (2013). https://doi.org/10.1002/adma.201202951
  9. S. Eigler and A. Hirsch, "Chemistry with graphene and graphene oxide-challenges for synthetic chemists", Angew. Chem. Int. Ed., 53, 7720-7738 (2014). https://doi.org/10.1002/anie.201402780
  10. R. R. Amirov, J. Shayimova, Z. Nasirova, and A. M. Dimiev, "Chemistry of graphene oxide. Reactions with transition metal cations", Carbon, 116, 356-365 (2017). https://doi.org/10.1016/j.carbon.2017.01.095
  11. H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91-95 (2013). https://doi.org/10.1126/science.1236098
  12. H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, and B. D. McCloskey, "Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts", Nature Catalysis, 1, 282-290 (2018). https://doi.org/10.1038/s41929-018-0044-2
  13. R. Nair, H. A. Wup, P. N. Jayatami, L. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442-444 (2012). https://doi.org/10.1126/science.1211694
  14. H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Gleason, B. D. Freeman, and H. B. Park, "High-performance CO2-philic graphene oxide membranes under wet-conditions", Chem. Commun., 50, 13563-13566 (2014). https://doi.org/10.1039/c4cc06207h
  15. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343, 752-754 (2014). https://doi.org/10.1126/science.1245711
  16. H. W. Yoon, T. H. Lee, C. M. Doherty, T. H. Choi, J. S. Roh, H. W. Kim, Y. H. Cho, S-H. Do, B. D. Freeman, and H. B. Park, "Origin of CO2-philic sorption by graphene oxide layered nanosheets and their derivatives", J. Phys. Chem. Lett., 11, 2356-2362 (2020). https://doi.org/10.1021/acs.jpclett.0c00204
  17. K. M. Cho, H.-J. Lee, Y. T. Nam, Y-J. Kim, C. Kim, K. M. Kang, C. A. R. Torres, D. W. Kim, and H. T. Jung, "Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons", ACS Applied Materials & Interfaces, 11, 27004-27010 (2019). https://doi.org/10.1021/acsami.9b09037
  18. H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold", Adv. Funct. Mater., 28, 1803172 (2018). https://doi.org/10.1002/adfm.201803172
  19. J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, and D. W. Kim, "Scalable fabrication of deoxydenated graphene oxide nanofiltration membrane by continuous slot-die coating", J. Membr. Sci., 612, 118454 (2020). https://doi.org/10.1016/j.memsci.2020.118454
  20. Y. Choi, S.-S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195-12202 (2020). https://doi.org/10.1021/acsnano.0c05902
  21. B. C. Brodie, "XIII. On the atomic weight of graphite", Philosophical Transactions of the Royal Society of London, 149, 249-259 (1859). https://doi.org/10.1098/rstl.1859.0013
  22. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806-4814 (2010). https://doi.org/10.1021/nn1006368
  23. J. Chen, B. Yao, C. Li, and G. Shi, "An improved Hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225-229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
  24. B. Brodie, "Note sur un nouveau procede pour la purification et la desagregation du graphite", Ann. Chim. Phys., 45, 351-353 (1855).
  25. G. Bettendorf, "Zur geschichte der endokrinologie und reproduktionsmedizin: 256 biographien und berichte", Springer-Verlag (2013).
  26. M. Berthelot, "Recherches sur les etats du carbone", Ann. Chim. Phys. 4e serie, 19, 392-426 (1870).
  27. V. Kohlschutter and P. Haenni, "Zur kenntnis des graphitischen kohlenstoffs und der graphitsaure", Z. Anorg. Allg. Chem., 105, 121-144 (1919). https://doi.org/10.1002/zaac.19191050109
  28. U. Hofmann and A. Frenzel, "Quellung von graphit und die bildung von graphitsaure", Ber. Dtsch. Chem. Ges. (A and B Series), 63, 1248-1262 (1930). https://doi.org/10.1002/cber.19300630543
  29. W. S. Hummers Jr. and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958). https://doi.org/10.1021/ja01539a017
  30. T. Nakajima, A. Mabuchi, and R. Hagiwara, "A new structure model of graphite oxide", Carbon, 26, 357-361 (1988). https://doi.org/10.1016/0008-6223(88)90227-8
  31. T. Nakajima and Y. Matsuo, "Formation process and structure of graphite oxide", Carbon, 32, 469-475 (1994). https://doi.org/10.1016/0008-6223(94)90168-6
  32. D. Hadzi and A. Novak, "Infra-red spectra of graphitic oxide", Trans. Faraday Soc., 51, 1614-1620 (1955). https://doi.org/10.1039/TF9555101614
  33. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dekany, "Evolution of surface functional groups in a series of progressively oxidized graphite oxides", Chem. Mater., 18, 2740-2749 (2006). https://doi.org/10.1021/cm060258+
  34. F. A. de La Cruz and J. Cowley, "Structure of graphitic oxide", Nature, 196, 468-469 (1962). https://doi.org/10.1038/196468a0
  35. L. Staudenmaier, "Verfahren zur darstellung der graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31, 1481-1487 (1898). https://doi.org/10.1002/cber.18980310237
  36. U. Hofmann, A. Frenzel, and E. Csalan, "Die konstitution der graphitsaure und ihre reaktionen", Justus Liebigs Annalen der Chemie, 510, 1-41 (1934). https://doi.org/10.1002/jlac.19345100102
  37. G. Ruess, "Uber das graphitoxyhydroxyd (graphitoxyd)", Monatshefte fur Chemie und verwandte Teile anderer Wissenschaften, 76, 381-417 (1947). https://doi.org/10.1007/BF00898987
  38. U. Hofmann and R. Holst, "Uber die Saurenatur und die Methylierung von Graphitoxyd", Ber. Dtsch. Chem. Ges. (A and B Series), 72, 754-771 (1939). https://doi.org/10.1002/cber.19390720417
  39. M. Mermoux, Y. Chabre, and A. Rousseau, "FTIR and 13C NMR study of graphite oxide", Carbon, 29, 469-474 (1991). https://doi.org/10.1016/0008-6223(91)90216-6
  40. W. Scholz and H. Boehm, "Betrachtungen zur struktur des graphitoxids", Z. Anorg. Allg. Chem., 369, 327-340 (1969). https://doi.org/10.1002/zaac.19693690322
  41. W. Cai, R. D. Piner, F. J. Stadermsn, S. J. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stollrt, J. An, D. Chen, and R. S. Ruoff, "Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide", Science, 321, 1815-1817 (2008). https://doi.org/10.1126/science.1162369
  42. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets", Nature, 446, 60-63 (2007). https://doi.org/10.1038/nature05545
  43. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, 490, 192-200 (2012). https://doi.org/10.1038/nature11458
  44. H. B. Park, "Gas separation membranes", Encyclopedia of Membrane Science and Technology, 1-32 (2013).
  45. H. B. Park and Y. M. Lee, "Polymeric membrane materials and potential use in gas separation, in Advanced membrane technology and applications", pp. 633-669, John Wiley & Sons, Inc. (2008).
  46. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393-1411 (2002). https://doi.org/10.1021/ie0108088
  47. W. J. Koros, and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1-80 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  48. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  49. D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes: A topical report", National Energy Technology Laboratory, Pittsburgh, PA, Morgantown (2003).
  50. M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902-1905 (1999). https://doi.org/10.1126/science.285.5435.1902
  51. R. M. De Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710-1711 (1998). https://doi.org/10.1126/science.279.5357.1710
  52. D. M. Sterescu, L. Bolhuis-Versteeg, N. F. A. van der Vegt, D. F. Stamatialis, and M. Wessling, "Novel gas separation membranes containing covalently bonded fullerenes", Macromol. Rapid Commun., 25, 1674-1678 (2004). https://doi.org/10.1002/marc.200400296
  53. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62-65 (2004). https://doi.org/10.1126/science.1092048
  54. J. K. Holt, H. G. Park, Y. Wang, M. Staderman, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037 (2006). https://doi.org/10.1126/science.1126298
  55. D.-e. Jiang, V. R. Cooper, and S. Dai, "Porous graphene as the ultimate membrane for gas separation", Nano Lett., 9, 4019-4024 (2009). https://doi.org/10.1021/nl9021946
  56. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728-732 (2012). https://doi.org/10.1038/nnano.2012.162
  57. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, B. Yu, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95-98 (2013). https://doi.org/10.1126/science.1236686
  58. H. B. Park, H. W. Yoon, and Y. H. Cho, "Graphene oxide membrane for molecular separation", Graphene Oxide: Fundamentals and Applications, 296 (2016).
  59. O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials", Small, 6, 711-723 (2010). https://doi.org/10.1002/smll.200901934
  60. Y. H. Cho, H. W. Kim, H. D. Lee, J. E. Shin, B. M. Yoo, and H. B. Park, "Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited", J. Membr. Sci., 544, 425-435 (2017). https://doi.org/10.1016/j.memsci.2017.09.043
  61. J. S. Roh, T. H. Choi, T. H. Lee, H. W. Yoon, J. Kim, H. W. Kim, and H. B. Park, "Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing", J. Phys. Chem. Lett., 10, 7725-7731 (2019). https://doi.org/10.1021/acs.jpclett.9b03082
  62. K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, "A graphene oxide membrane with highly selective molecular separation of aqueous organic solution", Angew. Chem., 126, 7049-7052 (2014). https://doi.org/10.1002/ange.201401061
  63. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693-3700 (2013). https://doi.org/10.1002/adfm.201202601
  64. D. W. Boukhvalov, M. I. Katsnelson, and Y.-W. Son, "Origin of anomalous water permeation through graphene oxide membrane", Nano Lett., 13(8), 3930-3935 (2013). https://doi.org/10.1021/nl4020292
  65. G. M. Geise, H. B. Park, A. C. Saglea, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130-138 (2011). https://doi.org/10.1016/j.memsci.2010.11.054