• Title/Summary/Keyword: gas production

Search Result 2,679, Processing Time 0.034 seconds

Investigation on the Practical Use of Gas Hydrate in Gas Industry (가스하이드레이트 산업시스템 실용화 현황 및 동향 분석)

  • Gwon, Ok-Bae;Sin, Chang-Hun;Park, Seung-Su;Han, Jeong-Min;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.415-418
    • /
    • 2006
  • In Japan, research and development were undertaken on gas hydrate-side industrial processes associated with power generation system connections that may particularly be necessary to develop gas hydrated technology-based industrial systems. In so doing, data and engineering technologies useful n formulating guidelines on design of practical process were accumulated. In addition, basic research into theoretical evidence were carried out to promote and support the development of technological elements for those processes. In basic research designed to promote and support the research and development of elemental technologies microanalyses were conducted to understand the decomposition mechanism of mixed gas hydrate. Moreover, measurement technologies that can be applied in industrial processes, such as numerical analyses and concentration ion measurement, were examined. Japan has developed a highly efficient gas hydrate formation process using micro-bubbles with a tubular reactor. Higher formation rate over conventional systems has been obtained by the process. As mentioned above, the technical problems were clarified and the economics were studied from a view point of the NGH technology in this study. The results can be applied for utilization and must contribute to popularization of gas hydrate production.

  • PDF

The Economic Effect of Industrial Investment on North Korea Energy and Natural Gas (북한 에너지산업과 천연가스분야 투자에 따른 경제적 파급효과)

  • Kim, Hyoung-Tae;Chae, Jung-Min;Cho, Young-Ah;Kim, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.7-14
    • /
    • 2016
  • The economic crisis in North Korea has reduced its capacity to invest in the energy industries. The country is going through a vicious cycle of decreased investment in the energy industries and reduced energy production. This suggests that the energy industries would come to the top priority of investment once the economy improves. This paper calculated the economic ripple effect of the investment on North and South Korean economies based on the assumption that 390 billion won was invested in the construction of a natural gas combined-cycle power plant in Gaesong Industrial Complex. In order to analyze the economic ripple effect of the investment on North Korean economy, we constructed the inter-industry relation table of North Korea for year 2014 and used the input-output model. The ripple effect of the investment in the natural gas industry turned out to be 1.012 billion dollars. In order to analyze the effect of the investment on South Korean economy, we constructed the inter-industry relation table of South Korea for year 2013 and used the demand-driven model for inter-industry analysis. As a result, production, added-value and employment inducement coefficients of the investment in the natural gas industry were calculated as 2.02073, 0.62697 and 8.99409 respectively.

Universal Plasma-chemical Module for Carbon-containing Raw Materials Treatment

  • Park, Hyun-Seo;Zasypkin, I.M.
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • A universal plasma-chemical module (PChM) for the industrial processing of different hydrocarbon raw material pyrolysis was designed and tested. Laboratory investigations for the plasma-chemical method of acetylene production from natural gas and different coals were made. Similar laboratory tests on the industrial production of acetylene as a raw material for organic syn-thesis were developed using the PChM. A comparison of the suggested plasma-chemical method with the traditional process of acetylene production were carried out. The outlook of the plasma-chemical method was shown.

A Basic Study on Spherical UO2 Kernel Preparation Using the Sol-Gel Method (Sol-Gel법을 이용한 구형 UO2 Kernel 제조에 관한 기초연구)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung;Na, Sang-Ho;Lee, Young-Woo;Chang, Jong-Wha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.618-623
    • /
    • 2005
  • HTGR (High Temperature Gas-Cooled Reactor) is highlighted to next generation power plant for producing the clean hydrogen gas. In this study, the spherical $UO_2$ kernel via $UO_3$ gel particles was prepared by the sol-gel process. Raw material of slightly Acid Deficient Uranyl Nitrate (ADUN) solution, which has pH = 1.10 and $[NO_3]/[U]$ mole ratio = 1.93, was obtained from dissolution of $U_3O_8$ powder with conc.-$HNO_3$. The surface of these spherical $UO_3$ gel particles, which was prepared from the broth solution, consisted of 1 M-uranium, 1 M-HMTA, and urea, were covered with the fine crystallite aggregates, and these particles were so hard that crushed well. But the other $UO_3$ gel particles prepared with the broth solution, consisted of 2 M-uranium, 2 M-HMTA, and urea, have soft surface characteristics and an amorphous phase. This type of $UO_3$ gel particles is some chance of doing possibility of high density from the compaction. The amorphous $UO_3$ gel particles was converted to $U_3O_8$ and then $UO_2$ by calcination at $600^{\circ}C\;in\;4\%\;-\;H_2\;+\;N2$ atmosphere.

Effect of Hydraulic Retention Time (HRT) on the Hydrogen Production and Its Dynamic Characteristics in the Anaerobic Digestion Process Using Clostridium beijerinckii Donker 1926 (Clostridium beijerinckii Donker 1926을 이용한 혐기성 소화공정에서 체류시간 변화에 의한 수소 생산과 동력학적 특성)

  • Jeong, Tae-Young;Cha, Gi-Cheol;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.162-167
    • /
    • 2007
  • Hydrogen production and its dynamics were investigated in the continuous anaerobic digestion process using Clostridium beijerinckii Donker 1926. In this work, glucose was used as a substrate and hydraulic retention times (HRT) were 0.5, 0.25 or 0.125 day. The removal efficiency of carbohydrate was over 99% under all of HRT conditions. As HRT was shorter, COD removal efficiency became lower while hydrogen content in the total gas and hydrogen production rate became higher. The cell growth yield and hydrogen production yield were 0.27 g-VSS/g-glucose and 0.26 L/g-glucose, respectively, at the steady state. It is expected that the microorganism is able to produce hydrogen when used in the wastewater treatment containing carbohydrate such as glucose. Also, the results in this study could be applied to the actual hydrogen gas production, a promising alternative energy.

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

The Application of Gas Injection Technology for the Automobile Handle Part (자동차용 핸들 성형시 Gas Injection 응용)

  • Heo Y. M.;Shin K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.103-108
    • /
    • 2002
  • The gas injection molding technique(GIT) is a special injection molding process and has been an established and acknowledged process technique for many years. GIT has proved successful in cases where warpage has to be minimized, sink marks avoided and material input reduced. The classic field of application for GIT, however, is the production of thick-walled, rod shaped parts or hollow articles. Through this application, the handle part for automobile is molded and this part is consequently used as a insert for the additional injection molding process encapsulated with PVC.

  • PDF

Equilibrium Conditions of Methane Hydrate added Help Gases (보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구)

  • Kim, Nam-Jin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.

New Process for Ti Alloy Powder Production by Using Gas Atomization

  • Fujita, Makoto;Arimoto, Nobuhiro;Nishioka, Kazuo;Miura, Hideshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.12-13
    • /
    • 2006
  • The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.

  • PDF

Co-Gasification of Woodchip and Plastic Waste for Producing Fuel Gas (연료용 합성가스 생산을 위한 바이오매스와 폐플라스틱의 혼합가스화)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.75-80
    • /
    • 2012
  • Gasification is a therm-chemical conversion process to convert various solid fuels into gaseous fuels under limited supply of oxygen in high temperature environment. Considering current availability of biomass resources in this country, the gasification is more attractive than any other technologies in that the process can accept various combustible solid fuels including plastic wastes. Mixed fuels of biomass and polyethylene pellets were used in gasification experiments in this study in order to assess their potential for synthesis gas production. The results showed that higher reaction temperatures were observed in mixed fuel compared to woodchip experiments. In addition, carbon monoxide, hydrogen, and methane concentrations were increased in the synthesis gas. Heating values of the synthesis gas were also higher than those from woodchip gasification. There are hundred thousand tons of agricultural plastic wastes generated in Korea every year. Co-gasification of biomass and agricultural plastic waste would provide affordable gaseous fuels in rural society.