• Title/Summary/Keyword: gas membrane

검색결과 1,203건 처리시간 0.027초

Gas Permeation Characteristics of the Prepared SiC Membrane through Polyimide Carbonization Treatmemt (폴리이미드의 탄화 처리에 의한 SiC 분리막의 가스투과 특성)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.66-70
    • /
    • 2005
  • For the application in HI decomposition reaction of thermochemical water-splitting IS process, the carbonized membranes using the polymer material (polyimide) were prepared, and SiC membrane was also prepared by SiO treatment on those carbonized membranes. The weight change by the carbonation of polyimide was about 50%, and the weight decreased with an increase of carbonation temperature. The gas permeance ($H_2$ or $N_2$) of carbonized membrane decreased with an increase of carbonation temperature led to the pore closing. The gas permeance ($H_2$ or $N_2$) of SiC membrane increased with an increase of SiO treatment concentration, and the gas permeation mechanism was changed from the activiation energy flow to Knudsen flow.

Finite Element Analysis on the Pitch Design of Ring Knot Type Membrane Unit (링 마디식 멤브레인 유니트의 피치설계에 관한 유한요소해석)

  • Kim Chung Kyun;Lee Young-Suk;Cha Baeg-Soon;Oh Byoung-Taek;Yoon In Soo;Hong Seong Ho
    • Journal of the Korean Institute of Gas
    • /
    • 제3권3호
    • /
    • pp.58-64
    • /
    • 1999
  • This paper has been analyzed for the stress behavior problems of the ring knot membrane unit using the finite element method about the pitch design of the membrane unit, which is one of the most important parameters in manufacturing of the membrane type LNG storage tanks. The FEM results have been compared those of the existing pitch design length. The safety problem of the ring knot membrane model, which is considered in this study, does not come out any more no matter what the pitch length is used in the extra large LNG storage tanks. But in the case of the membrane for LNG tankers, it is advantageous to design the pitch short because of fatigue strength caused by repeated loadings. Looking at the deformation behaviors of the membrane corrugation, the deformation of the hight in the y direction occurs $15{\~}50\%$ more than that of the width in the z direction. It shows also that the deformation of the membrane with $-162^{\circ}C$ cryogenic temperature is not so great compared with the deformation by hydrostatic pressure.

  • PDF

Development of Ceramic Hollow Fiber Membrane Contactor Modules for Carbon Dioxide Separation (이산화탄소 분리용 세라믹 중공사 접촉막 모듈 기술 개발)

  • Lee, Hong Joo;Che, Jin Woong;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • 제7권3호
    • /
    • pp.249-256
    • /
    • 2016
  • Porous $Al_2O_3$ hollow fiber membranes were successfully prepared by dry-wet spinning/sintering method. The SEM image shows that the $Al_2O_3$ hollow fiber membrane consists mostly of sponge pore structure. The contact angle and the breakthrough pressure were $126^{\circ}$ and 1.91 bar, respectively. This results indicate that the $Al_2O_3$ hollow fiber membranes were successfully modified to hydrophobic surface. The hydrophobic modified $Al_2O_3$ hollow fiber membranes were assembled into a membrane contactor system to separate $CO_2$ from a model gas mixture of the flue gas at elevated gas velocity. The $CO_2$ absorption flux was enhanced when the gas velocity increased from $1{\times}10^{-3}$ to $6{\times}10^{-3}$ m/s. Whereas the $CO_2$ absorption flux was decreased with the number of hollow fiber membrane of a module because of the concentration polarization. Furthermore, we developed an lab-scale $Al_2O_3$ hollow fiber membrane contactor modules and their system (i.e., $CO_2$ absorption using the $Al_2O_3$ membrane and monoethanolamine (MEA)) that could dispose of over $0.02Nm^3/h$ mixture gas (15% $CO_2$) with the removal efficiency higher than 95%. The results can be useful in a field of the membrane contactor for $CO_2$ separation, helping to design and extend a equipment.

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • 제7권1호
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

Prediction of Intrinsic Pore Properties of Ultrafiltration Membrane by Solute Rejection Curves (용질배제 곡선에 의한 한외여과 막의 세공특성 예측)

  • 염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 한국막학회 1991년도 추계 총회 및 학술발표회
    • /
    • pp.4-8
    • /
    • 1991
  • The characterization of pore properties (mean pore size and pore size distribution) of the active layer in a UF membrane is important not only in order to obtain information about the factors affecting pore formation during membrane manufacturing but also to understand deeply the mechanism of solute and solvent transport through pores. Many methods of characterizing quantitatively the pore properties of UF membranes have been suggested in the literature: solvent and gas flow measurement, bubble point determination, electron microscopy, gas adsorption/desorption measurement, rejection measurement etc. But most of these methods involve time-consuming procedures and involve some wellknown problems and uncertainties.

  • PDF

Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor (PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성)

  • Park, Hyun-Hee;Jo, Hang-Dae;Kim, In-Won;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.521-528
    • /
    • 2008
  • The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of $SO_2$ gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet $SO_2$ gas on the $SO_2$ removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient($k_m$) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.

CO Selox Reaction Using Y-type Zeolite Catalytic Membranes

  • Bemardo, P.;Algieri, C.;Barbieri, G.;Drioli, E.
    • Korean Membrane Journal
    • /
    • 제8권1호
    • /
    • pp.13-20
    • /
    • 2006
  • The production of CO-free hydrogen streams for feeding PEM-Fuel Cells using catalytic zeolite membrane reactors was analysed by means of selective oxidation. Tubular FAU (Na-Y) zeolite membranes, prepared by a secondary growth method and Pt-loaded, were used in a flow-through MR configuration. The catalytic tests were carried out at $200^{\circ}C$ and at different pressures with a simulated dry reformate shifted gas mixture ($H_2$ ca. 60%, CO 1 %, plus $O_2,\;N_2,\;CO_2$). The operative $O_2/CO$ stoichiometric equivalent feed ratio was ${\lambda}= 2$. These catalytic tests, reducing the CO concentration down to $10{\sim}50$ ppm, verified the possibility of MR integration after using a low temperature water-gas shift unit of a fuel processor to convert hydrocarbons into hydrogen-rich gas.

Modelling and Simulation of H2 separation in Pd Membrane System with Co-current and Current-current Flow (병류와 향류 흐름에서 수소분리를 위한 Pd 분리막 시스템의 모델링 및 모사)

  • Yi, Yong;Noh, Seunghyo;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.598-602
    • /
    • 2010
  • In this paper, we carried out CFD modelling and simulation for the membrane system to separate H2 gas from the multi-component feed gas. The membrane system is of the annulus tubular type consisting of the external lumen side for the feed gas and the internal permeation side for the sweeping gas. The operating temperature and pressure of the lumen side inlet flow are $374^{\circ}C$ and 7 bar respectively and those of the sweeping gas are $374^{\circ}C$ and 3 bar, and considering these conditions, Pd membrane system was employed. CFD simulations were performed for the co-current flow and counter-current flow membrane system based on the flow directions between the feed and the sweeping gas. Comparisons and discussions were made for the H2 partial pressure, H2 mole fraction and H2 flux for both cases. Furthermore, we executed CFD simulations for the each case of the various inlet flow rates of the feed gas at the lumen side. Accordingly, we reviewed the effects of the flow rate and residence time on the performance of the membrane system.

Hydrogen separation of $V_{99.8}B_{0.2}$ Alloy Membrane in Water-gas shift Reaction (수성 가스 전이반응에서 $V_{99.8}B_{0.2}$ 합금 분리막의 수소분리)

  • Jeon, Sung-Il;Jung, Yeong-Min;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • 제22권1호
    • /
    • pp.16-22
    • /
    • 2012
  • The influence of co-existing gases on the hydrogen permeation without sweep gas was studied through a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane. Membranes have been investigated in the pressure range 1.5-8.0 bar under pure hydrogen, hydrogen-carbon dioxide and hydrogen-carbon monoxide gas mixture without sweep gas at $400^{\circ}C$. Preliminary hydrogen permeation experiments without sweep gas have been confirmed that hydrogen flux was $40.7mL/min/cm^2$ for a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane (thick : 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen flux was $21.4mL/min/cm^2$ for $V_{99.8}B_{0.2}$ alloy membrane using $H_2/CO_2$ as the feed gas. The hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of pressure when $H_2/CO_2$and $H_2/CO$mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD, SEM/EDX results after permeation test that the Pd-coated $V_{99.8}B_{0.2}$ alloy membrane had good stability and durability for various mixtures feeding condition.

Ionic Liquid based Carbon Dioxide Separation Membrane (이온성 액체를 이용한 이산화탄소 분리막)

  • Park, Jung Hyeok;Patel, Rajkumar
    • Membrane Journal
    • /
    • 제30권3호
    • /
    • pp.149-157
    • /
    • 2020
  • Ionic Liquid (IL) in the category of low-temperature molten salts with organic cation and organic/inorganic anion has shown great potentiality in CO2 gas separation. CO2 gas separation from flue gas by IL based membrane has been widely researched in recent years to overcome climate change and global warming. Membranes based on free standing polyionic liquid (PIL), blend of ionic liquid and composite ionic liquid membranes are discussed in this review. Introducing different IL monomers and tuning microstructure of PIL membrane and composite of PIL-IL to enhance mechanical properties of membranes with good CO2 gas permeability and selectivity. Variations in cation and anions of monomer has great impact on the membrane gas separation performance.