DOI QR코드

DOI QR Code

Ionic Liquid based Carbon Dioxide Separation Membrane

이온성 액체를 이용한 이산화탄소 분리막

  • Park, Jung Hyeok (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 박정혁 (연세대학교 언더우드국제대학 에너지환경과학공학과(EESE) 융합과학공학과(ISED)) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 에너지환경과학공학과(EESE) 융합과학공학과(ISED))
  • Received : 2020.06.03
  • Accepted : 2020.06.17
  • Published : 2020.06.30

Abstract

Ionic Liquid (IL) in the category of low-temperature molten salts with organic cation and organic/inorganic anion has shown great potentiality in CO2 gas separation. CO2 gas separation from flue gas by IL based membrane has been widely researched in recent years to overcome climate change and global warming. Membranes based on free standing polyionic liquid (PIL), blend of ionic liquid and composite ionic liquid membranes are discussed in this review. Introducing different IL monomers and tuning microstructure of PIL membrane and composite of PIL-IL to enhance mechanical properties of membranes with good CO2 gas permeability and selectivity. Variations in cation and anions of monomer has great impact on the membrane gas separation performance.

유기 양이온과 유기/무기 음이온을 포함하고 있는 이온성 액체는 저온 용융 염의 종류이며 이산화탄소 분리 기능에 대한 잠재력을 갖고 있다. 지구 온난화와 기후 변화의 문제점을 극복하기 위해 이온성 액체를 기반으로 한 막을 개발하여 연도가스에서 이산화탄소를 걸러내는 연구가 활발히 진행되고 있다. 본 리뷰에서는 홀로 설 수 있는 중합 이온성 액체(PIL), 이온성 액체와 이온성 액체 복합 막의 혼합의 기술이 논의될 것이다. 새로운 이온성 액체의 모노머 도입, 그리고 중합 이온성 액체 막과 복합 막의 미세구조변형은 막의 기계적 특성을 향상시켜 가스투과율과 선택도를 크게 향상 시키는데 시용되어 왔다. 이온성 액체 모너머의 양이온과 음이온의 다양한 변형은 막의 가스 분리성에 큰 영향이 있다.

Keywords

References

  1. M. G. Cowan, D. L. Gin, and R. D. Noble, "Poly (ionic liquid)/ionic liquid ion-gels with high "free" ionic liquid content: Platform membrane materials for $CO_2$/light gas separations", Acc. Chem. Res., 49, 724 (2016). https://doi.org/10.1021/acs.accounts.5b00547
  2. D. A. Kang, K. Kim, and J. H. Kim, "Highly-permeable mixed matrix membranes based on SBS-g-POEM copolymer, ZIF-8 and ionic liquid", Membr. J., 29, 44 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.44
  3. Y. F. Hu, Z. C. Liu, C. M. Xu, and X. M. Zhang, "The molecular characteristics dominating the solubility of gases in ionic liquids", Chem. Soc. Rev., 40, 3802 (2011). https://doi.org/10.1039/c0cs00006j
  4. K. W. Yoon and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226
  5. P. Luis, T. Van Gerven, and B. Van der Bruggen, "Recent developments in membrane-based technologies for $CO_2$ capture", Prog. Energy Combust., 38, 419 (2012). https://doi.org/10.1016/j.pecs.2012.01.004
  6. N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim "Effect of PVP on $CO_2/N_2$ separation performance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113
  7. W. Qian, J. Texter, and F. Yan, "Frontiers in poly (ionic liquid)s: Syntheses and applications", Chem. Soc. Rev., 46, 1124 (2017). https://doi.org/10.1039/C6CS00620E
  8. S. J. Moon, H. J. Min, N U. Mim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for $CO_2$ capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.223
  9. A. S. Shaplov, D. O. Ponkratov, and Y. S. Vygodskii, "Poly(ionic liquid)s: Synthesis, properties, and application", Polym. Sci. Ser. B, 58, 73 (2016). https://doi.org/10.1134/S156009041602007X
  10. L. C. Tomé and I. M. Marrucho, "Ionic liquid-based materials: A platform to design engineered $CO_2$ separation membranes", Chem. Soc. Rev., 45, 2785 (2016). https://doi.org/10.1039/C5CS00510H
  11. X. Yan, S. Anguille, M. Bendahan, and P. Moulin, "Ionic liquids combined with membrane separation processes: A review", Sep. Purif. Technol., 222, 230 (2019). https://doi.org/10.1016/j.seppur.2019.03.103
  12. S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, and S. Zhang, "Ionic-liquid-based $CO_2$ capture systems: Structure, interaction and process", Chem. Rev., 117, 9625 (2017). https://doi.org/10.1021/acs.chemrev.7b00072
  13. J. Yin, C. Zhang, Y. Yu, T. Hao, H. Wang, X. Ding, and J. Meng, "Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved $CO_2$ capture performance", J. Membr. Sci., 593, 117405 (2020). https://doi.org/10.1016/j.memsci.2019.117405
  14. L. C. Tome, D. J. S. Patinha, C. S. R. Freire, L. P. N. Rebelo, and I. M. Marrucho, "$CO_2$ separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes", RSC Adv., 3, 12220 (2013). https://doi.org/10.1039/c3ra41269e
  15. M. G. Cowan, M. Masuda, W. M. McDanel, Y. Kohno, D. L. Gin, and R. D. Noble, "Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity", J. Membr. Sci., 498, 408 (2016). https://doi.org/10.1016/j.memsci.2015.10.019
  16. W. J. Horne, M. A. Andrews, M. S. Shannon, K. L. Terrill, J. D. Moon, S. S. Hayward, and J. E. Bara, "Effect of branched and cycloalkyl functionalities on $CO_2$ separation performance of poly(IL) membranes", Sep. Purif. Technol., 155, 89 (2015). https://doi.org/10.1016/j.seppur.2015.02.009
  17. T. K. Carlisle, J. E. Bara, A. L. Lafrate, D. L. Gin, and R. D. Noble, "Main-chain imidazolium polymer membranes for $CO_2$ separations: An initial study of a new ionic liquid-inspired platform", J. Membr. Sci., 359, 37 (2010). https://doi.org/10.1016/j.memsci.2009.10.022
  18. T. K. Carlisle, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "$CO_2$/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content", J. Membr. Sci., 397-398, 24 (2012). https://doi.org/10.1016/j.memsci.2012.01.006
  19. T. K. Carlisle, E. F. Wiesenauer, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "Ideal $CO_2$/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films", Ind. Eng. Chem. Res., 52, 1023 (2013). https://doi.org/10.1021/ie202305m
  20. P. Nellepalli, L. C. Tome, K. Vijayakrishna, and I. M. Marrucho, "Imidazolium-based copoly(ionic liquid) membranes for $CO_2/N_2$ separation", Ind. Eng. Chem. Res., 58, 2017 (2019). https://doi.org/10.1021/acs.iecr.8b05093
  21. E. K. O'Harra, I. Kammakakam, M. E. Devriese, M. D. Noll, E. J. Bara, and M. E. Jackson, "Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes", Membranes, 9, 79 (2019). https://doi.org/10.3390/membranes9070079
  22. I. Kammakakam, K. E. O'Harra, J. E. Bara, and E. M. Jackson, "Design and synthesis of imidazolium-mediated Troger's base-containing ionene polymers for advanced $CO_2$ separation membranes", ACS Omega, 4, 3439 (2019). https://doi.org/10.1021/acsomega.8b03700
  23. W. M. McDanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, "Effect of monomer structure on curing behavior, $CO_2$ solubility, and gas permeability of ionic liquid-based epoxy-amine resins and ion-gels", Ind. Eng. Chem. Res., 54, 4396 (2015). https://doi.org/10.1021/ie5035122
  24. K. Friess, M. Lanc, K. Pilnacek, V. Fila, O. Vopicka, Z. Sedlakova, M. G. Cowan, W. M. McDanel, R. D. Noble, D. L. Gin, and P. Izak, "$CO_2/CH_4$ separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing", J. Membr. Sci., 528, 64 (2017). https://doi.org/10.1016/j.memsci.2017.01.016
  25. P. Li, D. R. Paul, and T. S. Chung, "High performance membranes based on ionic liquid polymers for $CO_2$ separation from the flue gas", Green Chem., 14, 1052 (2012). https://doi.org/10.1039/c2gc16354c