References
-
M. G. Cowan, D. L. Gin, and R. D. Noble, "Poly (ionic liquid)/ionic liquid ion-gels with high "free" ionic liquid content: Platform membrane materials for
$CO_2$ /light gas separations", Acc. Chem. Res., 49, 724 (2016). https://doi.org/10.1021/acs.accounts.5b00547 - D. A. Kang, K. Kim, and J. H. Kim, "Highly-permeable mixed matrix membranes based on SBS-g-POEM copolymer, ZIF-8 and ionic liquid", Membr. J., 29, 44 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.44
- Y. F. Hu, Z. C. Liu, C. M. Xu, and X. M. Zhang, "The molecular characteristics dominating the solubility of gases in ionic liquids", Chem. Soc. Rev., 40, 3802 (2011). https://doi.org/10.1039/c0cs00006j
-
K. W. Yoon and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/
$Al_2O_3$ composite membrane for$CO_2$ separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226 -
P. Luis, T. Van Gerven, and B. Van der Bruggen, "Recent developments in membrane-based technologies for
$CO_2$ capture", Prog. Energy Combust., 38, 419 (2012). https://doi.org/10.1016/j.pecs.2012.01.004 -
N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim "Effect of PVP on
$CO_2/N_2$ separation performance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113 - W. Qian, J. Texter, and F. Yan, "Frontiers in poly (ionic liquid)s: Syntheses and applications", Chem. Soc. Rev., 46, 1124 (2017). https://doi.org/10.1039/C6CS00620E
-
S. J. Moon, H. J. Min, N U. Mim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for
$CO_2$ capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.223 - A. S. Shaplov, D. O. Ponkratov, and Y. S. Vygodskii, "Poly(ionic liquid)s: Synthesis, properties, and application", Polym. Sci. Ser. B, 58, 73 (2016). https://doi.org/10.1134/S156009041602007X
-
L. C. Tomé and I. M. Marrucho, "Ionic liquid-based materials: A platform to design engineered
$CO_2$ separation membranes", Chem. Soc. Rev., 45, 2785 (2016). https://doi.org/10.1039/C5CS00510H - X. Yan, S. Anguille, M. Bendahan, and P. Moulin, "Ionic liquids combined with membrane separation processes: A review", Sep. Purif. Technol., 222, 230 (2019). https://doi.org/10.1016/j.seppur.2019.03.103
-
S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, and S. Zhang, "Ionic-liquid-based
$CO_2$ capture systems: Structure, interaction and process", Chem. Rev., 117, 9625 (2017). https://doi.org/10.1021/acs.chemrev.7b00072 -
J. Yin, C. Zhang, Y. Yu, T. Hao, H. Wang, X. Ding, and J. Meng, "Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved
$CO_2$ capture performance", J. Membr. Sci., 593, 117405 (2020). https://doi.org/10.1016/j.memsci.2019.117405 -
L. C. Tome, D. J. S. Patinha, C. S. R. Freire, L. P. N. Rebelo, and I. M. Marrucho, "
$CO_2$ separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes", RSC Adv., 3, 12220 (2013). https://doi.org/10.1039/c3ra41269e - M. G. Cowan, M. Masuda, W. M. McDanel, Y. Kohno, D. L. Gin, and R. D. Noble, "Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity", J. Membr. Sci., 498, 408 (2016). https://doi.org/10.1016/j.memsci.2015.10.019
-
W. J. Horne, M. A. Andrews, M. S. Shannon, K. L. Terrill, J. D. Moon, S. S. Hayward, and J. E. Bara, "Effect of branched and cycloalkyl functionalities on
$CO_2$ separation performance of poly(IL) membranes", Sep. Purif. Technol., 155, 89 (2015). https://doi.org/10.1016/j.seppur.2015.02.009 -
T. K. Carlisle, J. E. Bara, A. L. Lafrate, D. L. Gin, and R. D. Noble, "Main-chain imidazolium polymer membranes for
$CO_2$ separations: An initial study of a new ionic liquid-inspired platform", J. Membr. Sci., 359, 37 (2010). https://doi.org/10.1016/j.memsci.2009.10.022 -
T. K. Carlisle, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "
$CO_2$ /light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content", J. Membr. Sci., 397-398, 24 (2012). https://doi.org/10.1016/j.memsci.2012.01.006 -
T. K. Carlisle, E. F. Wiesenauer, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "Ideal
$CO_2$ /light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films", Ind. Eng. Chem. Res., 52, 1023 (2013). https://doi.org/10.1021/ie202305m -
P. Nellepalli, L. C. Tome, K. Vijayakrishna, and I. M. Marrucho, "Imidazolium-based copoly(ionic liquid) membranes for
$CO_2/N_2$ separation", Ind. Eng. Chem. Res., 58, 2017 (2019). https://doi.org/10.1021/acs.iecr.8b05093 - E. K. O'Harra, I. Kammakakam, M. E. Devriese, M. D. Noll, E. J. Bara, and M. E. Jackson, "Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes", Membranes, 9, 79 (2019). https://doi.org/10.3390/membranes9070079
-
I. Kammakakam, K. E. O'Harra, J. E. Bara, and E. M. Jackson, "Design and synthesis of imidazolium-mediated Troger's base-containing ionene polymers for advanced
$CO_2$ separation membranes", ACS Omega, 4, 3439 (2019). https://doi.org/10.1021/acsomega.8b03700 -
W. M. McDanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, "Effect of monomer structure on curing behavior,
$CO_2$ solubility, and gas permeability of ionic liquid-based epoxy-amine resins and ion-gels", Ind. Eng. Chem. Res., 54, 4396 (2015). https://doi.org/10.1021/ie5035122 -
K. Friess, M. Lanc, K. Pilnacek, V. Fila, O. Vopicka, Z. Sedlakova, M. G. Cowan, W. M. McDanel, R. D. Noble, D. L. Gin, and P. Izak, "
$CO_2/CH_4$ separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing", J. Membr. Sci., 528, 64 (2017). https://doi.org/10.1016/j.memsci.2017.01.016 -
P. Li, D. R. Paul, and T. S. Chung, "High performance membranes based on ionic liquid polymers for
$CO_2$ separation from the flue gas", Green Chem., 14, 1052 (2012). https://doi.org/10.1039/c2gc16354c