• Title/Summary/Keyword: gas measurement method

Search Result 642, Processing Time 0.03 seconds

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

A Research on the Status of Greenhouse Gas Emission Factors from Livestock Sector to Create a National Greenhouse Gas Inventories (국가 온실가스 인벤토리 축산부문 작성을 위한 온실가스 배출계수 개발 현황에 관한 연구)

  • Lee, Jin Eui;Lee, Hyun Ju;Park, Kyu Hyun;Choi, Byong Yang;Ra, Chang Six
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.21-34
    • /
    • 2011
  • In this study, researches on the development of country specific greenhouse gas measurement and sampling methods from the livestock sector were reviewed. Research on greenhouse gas emission factors was started in early 2000 but was not actively involved in the development of livestock sector based emission factor: since 2009, works are underway for the development of livestock sector based emission factor. Most of the research on greenhouse gas emission in the field of animal studies were done by National Institute of Animal Science, because of the uniqueness of the research laboratories. Methods of emission measurement are still not internationally certified and therefore, measurement and sampling methods for Korea livestock sector are being studied, consulting the worldwide research trends. Flux chamber method are commonly using in Korea for green house gas emission factors measurement. In recent years, continuous measurement of the microclimate was introduced to measure greenhouse gases from livestock manure storage facilities and the micrometeorology method should be adapted as recommended by Intergovernmental Penal on Climate Change (IPCC) Guideline.

Composite Gas Measurement System using NDIR Method (NDIR 방법을 이용한 복합 가스 측정 시스템)

  • Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.624-629
    • /
    • 2018
  • The current study was conducted to develop a portable composite gas detector allowing the detection of both $CO_2$ and $CH_4$ gases by means of the Non Dispersive Infra-Red (NDIR) method. The gas detector is configured to radiate infrared waves using infrared lamps, where the wavelength of the infrared light is reduced due to absorption throughout the chamber, and this reduction (absorption) is detected by the absorption detector, before being converted and amplified to a 3.5V~6V electrical signal, providing as accurate a measurement as possible. The conventional singe sensor method measures the relative measurement by absorbing only specified wavelengths of infrared radiation, which in the case of gas detection leads to problems with accuracy due to the lack of a reference sensor when detecting light with a wavelength of only $4.26{\mu}m$. The dual sensor employed in this study provides a comparative measurement between the reference value derived from the wavelength of $3.91{\mu}m$, which is not influenced by other gas sources, and the measurement value derived from the wavelength of $4.26{\mu}m$, in order to reduce the errors and enhance the reliability, thereby allowing low power consumption for portable devices and multi-gas detection for both $CO_2$ and $CH_4$ gases. The portable composite gas detector developed herein provides a measurement rage of 0ppm~5,000ppm for $CO_2$ gas, and 0.5%vol for $CH_4$, which allows the determination of whether the $CO_2$ and $CH_4$ contents in indoor air are less than 1,000ppm or not. The current study established that the composite gas detector can be interlinked with firefighting appliances through portable devices or home automation, and is anticipated to be very effective in fire prevention.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

Experimental study on TDLAS temperature profile measurement using temperature binning method (TDLAS에서 temperature binning 방법을 이용한 온도 측정에 대한 실험적 연구)

  • Yoon, Sungwoon;Kim, Sewon;Shin, Myungchul;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.27-28
    • /
    • 2012
  • Tunable diode laser absorption spectroscopy(TDLAS) measurement techniques for several gases densities and temperatures have been applied in industrial combustion systems. Accurate measurement of temperature profile is very important, especially in power plants and heating furnaces. So profile fitting and temperature binning methods are new issue for accurate measurement of temperature in laser gas sensing. Temperature binning method is applied in this study for the measurement of temperature profile using tube furnace with three temperature zones. In this study the temperature profiles of tube furnace is accurately measured within 5% error, and this technique is proved to be very promising in the field of temperature profile measurement.

  • PDF

Diode-Laser Absorption Sensors for measurement of combustion Gas (연소배기 가스의 계측을 위한 다이오드 레이저 센서)

  • Shin, Myung-Chul;Kim, Se-Won;Kim, Dong-Hyuck
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.26-35
    • /
    • 2006
  • This work forcus on the development of gas sensor that measure the concentrations of exhaust gas using diode laser, Each diode laser for exhaust gas measurement is set to work at near-IR using both DA and WMS methods. Also use of fiber-coupled optical elements makes such a sensor rugged and easy to align. The results showed that gas concentrations of $O_2$, CO, $CO_2$, NO are accurately measured within ${\pm}2%$ error. The application of WMS method increased the beam intensity 2-3 times higher than DA method. It were experimentally compared WMS (Wavelength Modulation Spectroscopy) with DA (Direct Absorption) for the accuracy.

  • PDF

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

A Study on K2 Rifle Recoil Measurement and Analysis for Virtual Reality Marksmanship (가상현실 사격훈련을 위한 탄종별 K2 소화기의 주퇴산출 및 분석 연구)

  • Kim, Jong-Hwan;Jin, Youngho;Kwak, Yunki
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.13-27
    • /
    • 2020
  • Purpose: The purpose of this study is to present a recoil measurement and analysis of K2 rifle for the development of a virtual reality marksmanship training in the Republic of Korea Army. Methods: For the recoil measurement, a test-bed is built by a barrel that has exact dimensions of K2 rifle and three piezoelectric pressure sensors mounted on the barrel. Data of over 200 rounds of 5.56mm M193 and K100 bullets are collected and analyzed from live fire experiments. For the recoil analysis, both the free recoil method and the gas exhaust aftereffect method are used to calculate a recoil velocity, momentum and kinetic energy of K2 rifle by applying the law of conservation of momentum. In addition, a new method is proposed that uses the third law of motion and the chamber pressure model for the recoil measurement Results: The results show how different between the previous and proposed methods with respect to M193 and K100 bullets of K2 rifle. In M193, the free recoil method demonstrates 1.113, 4.197, and 2.335, the gas exhaust aftereffect method computes 1.698, 6.407, and 5.441, and the proposed method calculates 0.990, 3.734, and 1.848 in recoil velocity, momentum and kinetic energy, respectively. In K100, the free recoil method demonstrates 1.190, 4.487, and 2.669, the gas exhaust aftereffect method computes 1.776, 6.699, and 5.949, and the proposed method calculates 1.060, 3.998, and 2.119 in recoil velocity, momentum and kinetic energy, respectively. Conclusion: This study implements live fire experiments to provide recoil velocity, momentum, and kinetic energy of K2 rifle using both M193 and K100 bullets. For the development of the army virtual reality marksmanship, the results in this paper would be useful to design and produce a gun and/or a rifle of virtual reality.

A Study on the Occurrence Character of Contaminant in the Kitchen that Use Gas Fuel (가스를 연료로 사용한 주방에서의 오염물질 발생 특성에 대한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2001.11a
    • /
    • pp.77-82
    • /
    • 2001
  • This paper is contents that measure the ventilation rates and temperature by driving condition of exhaust fan, vapor, contaminant occurrence amount of carbon dioxide etc. In kitchen of apartment house. The ventilation rates in the apartment kitchen measured by Tracer Gas Method. And, temperature of when cook by gas table hood lower part 10cm and floor upside 10cm of kitchen central part, 120cm, 210cm heights measure. As ventilation rates measurement result, ventilation number of times was 0.7(number of times/hour) when did not to operate exhaust fan. but we were measured by 2.3(number of times/hour) when drove strongly. As temperature measurement result at cooking by gas table, temperature showed highest in hood lower part 10cm of case that do not operate exhaust fan. Temperature at kitchen central was most low in 10cm height in talc floor, and 210cm were measured highest. Concentration of carbon dioxide is very high by 4,350ppm after measurement time 10 minutes in state who do not operate exhaust fan at cooking by gas table.

  • PDF

Development of Fuel Economy Measurement Technology for Fuel Cell Electric Vehicle (수소연료전지차 연비 평가기술 개발)

  • Jung, Young-Woo;Park, Jeong-Kyu;Ye, Chang-Hwan;Park, Jong-Jin;Oh, Hyung-Seuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.152-155
    • /
    • 2007
  • Fuel cell electric vehicles (FCEVs) using hydrogen gas are zero emission vehicles, thus emission measurement for combustion vehicles is not applicable. The hydrogen gas consumption for fuel economy will be measured by the stabilized pressure/temperature method, mass flow method and electrical current method, etc. In this research, weight method with a newly manufactured test equipment is applied to measure the hydrogen consumption because above 3-methods have a deviation. The hydrogen consumption is directly calculated by the weight differences of the external hydrogen tank before and after the chassis dynamometer test. Ultimately the fuel economy for FCEVs is obtained with a deviation less than 1% in all chassis dynamometer tests.

  • PDF