• Title/Summary/Keyword: gas leak

Search Result 318, Processing Time 0.024 seconds

Design of LNG fuel tank for a light duty truck and numerical analysis of heat leak to LNG tank

  • Alena, Minkasheva;Kim, Sung Joon
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.65-70
    • /
    • 2007
  • The LNG tank are properly designed to fit with the limited installation space of a light duty truck, Hyundai Porter II. This designed LNG tank has 36 liter capacity, so two LNG tanks installed on Porter II truck allow it to run about 432 km per fueling. It is almost two times greater than CNG mileage for same truck. To analyze the relationship between car acceleration and heat leak for different fuel vapor/liquid ratios, the modified Fortran program "Pro-Heatleak" is used. Computational analysis shows that the relationship between the heat leak and vapor/liquid ratio is linearly inversed. Heat leak increases with increasing of car acceleration when fuel vapor/liquid ratio is less than 0.5 and decreases when fuel vapor/liquid ratio is greater than 0.5. The difference between maximum and minimum heat leak for full tank is about 12 percents. For the fuel vapor/liquid ratio equal to 0.5 heat leak does not depend on car acceleration.

  • PDF

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

A Study on the Development and Accuracy Improvement of an IR Combustible Gas Leak Detector with Explosion Proof (방폭형 적외선 가연성가스 누출검지기 개발 및 정확도 향상 연구)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Jo, Young-Do;Kwon, Jeong-Rock;Ahn, Sang-Guk;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we developed an explosion proof type and portable combustible gas leak detector and proposed an algorithm to improve the accuracy for measuring gaseous concentrations. The nation's first we developed an infrared gas leak detector with explosion proof standard(Ex d ib) and improved measuring accuracy by using linearization recursion equation and 2nd Lagrange interpolation polynomial. Together, we advanced their performances and added their easy functions after investigating field demands. To compare our and other company's detectors, we performed measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated the excellence of our instruments in measuring accuracy other than detecters through experimental results.

Development of Leakage Judgment Technique based on Pressure Data of Smart Gas Meter (스마트 가스 계량기 압력 데이터 기반 누출 판단 기법 개발)

  • Jung-Hoon Kim;Jung-Suk Oh;Jin-Han Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2023
  • As the meter reading method of gas meters develops, smart gas meters capable of remote meter reading (leak checking meters and multi-function safety meters) are being used. These meters have a function to judge leakage by utilizing the flow rate and pressure data collected as an additional function. Leakage judgment function using flow rate data has valid cases in the actual field, but the pressure data-based leakage judgment standard is based on not only the pressure value change due to leakage but also various factors (pressure regulator pressure, connection with adjacent meters, usage of adjacent houses, location of meters, etc.). There is a problem with pressure magnitude changes (levels). In this paper, as a technique that can judge leaks by using pressure data collected from smart gas meters, it was developed through preprocessing of pressure data, criteria for pressure value ranges related to leaks, leak judgment techniques, and application case verification.

CFD Approach on Gas Explosion for SIL in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.195-200
    • /
    • 2015
  • It is envisaged that the effect of increasingly stricter air emissions legislation implemented through IMO Annex VI and other local air quality controls, together with favorable financial conditions for the use of natural gas instead of liquid fuel oil as a bunker fuel, will see an increasing number of DF engine and single gas fuel engine applications to LNG carriers and other vessel types. As part of provision for the current international movements in the shipping industry to reduce GHG emission in air, new design concepts using natural gas as an alternative fuel source for propulsion of large commercial vessels, have been developed by shipyards and research institutes. In this study, an explosion analysis for a gas supply machinery room of LNG-fuelled container ship is presented. The gas fuel concept is employed for the high pressure ME-GI where a leakage in the natural gas double supply pipe to the engines is the subject of the present analysis. The consequences of a leak are simulated with computational fluid dynamics (CFD) tools to predict typical leak scenarios, gas cloud sizes and possible explosion pressures. In addition, capacity of the structure which is subject to explosion loads has been assessed.

A Study on Flammable Mixture Formation in a Rectangular Enclosure with Gaseous Fuel Leak from the Bottom (직사각형 밀폐공간내에 기체연료 밑면 누출시 가연성 혼합기 생성에 관한 연구)

  • Chung, N.K.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.249-256
    • /
    • 1993
  • Numerical method is applied to predict the time variation behavior of flammable mixture formation in a two dimensional enclosure from the beginning of gas leak. Additionally experimental method is used to consider qualitative aspects. Characteristics of flammable mixture formation such as distribution of flow and fuel mass fraction at various locations in the enclosure are determined for the following parameters: the various locations of leak at the bottom and aspect ratio of the enclosure. In the case of gas leak with small leak velocity from the bottom of enclosure gravitational force affects the formation of flammable mixture. Aspect ratio of the enclosure also affects the formation of flammable mixture. The volume of the region of recirculating flow is dominant factor affecting the formation mixture.

  • PDF

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

A Study on the Development of IoT Inspection System for Gas Leakage Inspection in Kitchen Gas Range Built-in Method (주방 가스레인지 빌트인 방식에서 가스 누출검사를 위한 IoT 검사 시스템 개발에 관한 연구)

  • Kang, Dae Guk;Choi, Young Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.283-290
    • /
    • 2022
  • In this study, an IoT inspection system that can be linked with a server was developed using a gas timer and ESP-01 Wi-Fi module installed on a gas valve in the home. The server environment of the gas leak IoT inspection system was installed with APM (Apache, PHP, MySQL) to collect gas pressure data by generation so that leakage checks could be performed. In order to control the gas leak IoT inspection system, the app inventory was used to manage the gas leak check value in real time. In addition, user convenience has been enhanced so that membership management, WiFi settings, and leakage check values can be checked through mobile apps. In order to manage subscribers by region, the user list was checked by logging in in in the administrator mode so that the information on whether or not the leak test was conducted and the results could be provided. In addition, when the user presses the gas leak check button, the pressure is automatically checked, and the measured value is stored in the server, and when a gas leak occurs, the leakage check is performed after alarm and repair so that it can be used if normal. In addition, in order to prevent overlapping membership, membership management can be performed based on MAC addresses.

A Study on a Quality Characteristics of Pressure Leak Test of Process Piping for Offshore Plant (해양플랜트 프로세스 배관 Pressure Leak Test의 품질 특성에 관한 연구)

  • Park, Chang-Soo;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.429-437
    • /
    • 2018
  • The process gas piping of the offshore plant can cause a massive explosion if the gas leakage occurs during operation. For the purpose of precaution of gas leakage accident, an air pressure test is performed on the process equipment tests using a test pump as much as the power to the piping inner side, mix 99% nitrogen gas and 1% helium gas. The purpose of the air pressure test is to check the work conformity process by handling and regulation for initial piping process, assembly, installation of module, welding, center alignment of the pipes assembling flange gasket in an unrestrained free state. In this paper, the regulation of the problematic air pressure test was analyzed and the solution criteria were established. And leakage tests of existing equipment were performed applying these solution methods. As a result, it was confirmed that there was no problem.