• Title/Summary/Keyword: gas generator

Search Result 757, Processing Time 0.027 seconds

Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics (함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발)

  • Lee, Hunseok;Son, Nayoung;Shim, Jaesoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1103-1109
    • /
    • 2021
  • ECS is a control device so that the warship can perform the mission stably by controlling and monitoring the entire propulsion system. As the recent provisions of the warship, it's propelling system is complicated than past, as the demand performance and mission of the warships are diverse. In accordance with the complicated propulsion system configuration, the demand for automatic control function of the ECS is increasing for convenient and stable propulsion system control for convenient and stable. As a result, verification of ECS stability and reliability is required. In this paper, we develop an interlocking signal simulator for verifying ECS control logic and communication protocol for warship with CODLOG propulsion systems. The simulator developed was implemented to simulate a signal of gas turbine, propulsion motors, diesel generator and 11 kinds of auxiliary equipment. The reliability of ECS was verified through the ECS communication program and the I/O signal static test with the simulator.

The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

  • Chung, Kwangzoo;Han, Youngyih;Kim, Jinsung;Ahn, Sung Hwan;Ju, Sang Gyu;Jung, Sang Hoon;Chung, Yoonsun;Cho, Sungkoo;Jo, Kwanghyun;Shin, Eun Hyuk;Hong, Chae-Seon;Shin, Jung Suk;Park, Seyjoon;Kim, Dae-Hyun;Kim, Hye Young;Lee, Boram;Shibagaki, Gantaro;Nonaka, Hideki;Sasai, Kenzo;Koyabu, Yukio;Choi, Changhoon;Huh, Seung Jae;Ahn, Yong Chan;Pyo, Hong Ryull;Lim, Do Hoon;Park, Hee Chul;Park, Won;Oh, Dong Ryul;Noh, Jae Myung;Yu, Jeong Il;Song, Sanghyuk;Lee, Ji Eun;Lee, Bomi;Choi, Doo Ho
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.337-343
    • /
    • 2015
  • Purpose: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

A Study on the Correlation between Lung Ventilation Scan using Technegas and Pulmonary Function Test in Patients with COPD (Technegas를 이용한 폐환기 검사와 폐기능 검사의 상관관계에 관한 고찰)

  • Kim, Sang-Gyu;Kim, Jin-Gu;Baek, Song-EE;Kang, Chun-Koo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Purpose Lung Ventilation Scan(LVS) images directly inhaled radiation gas to evaluate lung ventilation ability. Therefore, it is influenced by various factors related to inhalation, including number of breaths, respiratory duration, respiration rate, and breathing method. In actual LVS examinations, it is difficult for objectify the patient's ability to inhale, and there is currently no known index related to inhalation. Therefore, this study confirms the correlation between counts per second(cps) in LVS and the results of pulmonary function test(PFT) and evaluate its usefulness as an objective indicator of inhalation. Materials and Methods From October 2010 to September 2018, 36 Chronic Obstructive Pulmonary Disease(COPD) patients who had both LVS and PFT were classified by severity(Mild, Moderate, Severe). LVS was performed by creating Technegas with Vita Medical's Technegas Generator and inhaling it to the patient. LVS images were acquired with Philips's Forte equipment., and PFT used Carefusion's Vmax Encore 22. The correlation between the cps measured by setting the region of interest(ROI) of both lungs on the LVS and the forced vital capacity(FVC), forced expiratory volume in one second($FEV_1$), $FEV_1/FVC$ of the results of PFT was compared and analyzed. Results We analyzed the correlation between cps of LVS using Technegas and the results of PFT by classifying COPD patients according to severity. Correlation coefficient between $FEV_1/FVC$ and cps was Severe -0.773, Moderate -0.750, and Mild -0.437. The Severe and Modulate result values were statistically significant(P<0.05) and Mild was not significant(P=0.155). On the other hand, the correlation coefficient between FVC and cps was statistically significant only in Mild and it was 0.882(P<0.05). Conclusion According to the study, we were able to analyze correlation between cps of LVS using Technegas and the results of PFT in COPD Patients. Using this result, when performing a LVS, the results of PFT can be used as an index of inhaling capacity. In addition, it is thought that it will be more effective for the operation of the exam rooms.

Vibration characteristics of an ultrasonic waveguide for cooling (냉각용 초음파 웨이브가이드의 진동 특성)

  • Kim, Hyunse;Lim, Euisu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.568-575
    • /
    • 2020
  • Ultrasound has been widely used in various industrial fields. One of challenging application areas is cooling microelectronics. Ultrasonic cooling systems can work with air, argon (Ar) and nitrogen (N2) instead of conventional refrigerant such as freon gas, which can cause global warming. Furthermore, ultrasonic systems do not have moving parts, thus high durability can be obtained. So it is necessary to develop ultrasonic cooling systems due to environmental issues and durability points. In this paper, the design and fabrication processes are explained. When designing the system, a feasibility test was performed with a prototype cooler. Based on the result, finite element analysis with ANSYS software was performed. The predicted anti-resonance frequency for a piezoelectric actuator was 34.8 kHz, which was in good agreement with the experimental result of 34.6 kHz with 0.6% error. In addition, the predicted anti-resonance frequency for the ultrasonic waveguide was 39.4 kHz, which also agreed well with the experimental value of 39.8 kHz with 1.0% error. Based on these results, the developed ultrasonic waveguide might be applicable in microchip cooling.

A Study on a Hybrid Energy System to Reduce CO2 Emission In Mavuva Island, Fiji (마부바섬의 이산화탄소 감축을 위한 복합 에너지 시스템에 대한 연구)

  • Jung, Tae Yong;Hyun, Jung Hee;Lee, Seul;Huh, Minkyung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Although the effects of climate change are universal, Small Island Developing States (SIDS) are considered to be most vulnerable. SIDS heavily rely on imported oil and fossil fuels for electricity generation and transportation, which makes them economically vulnerable and exposed to fluctuating oil price. Among the reasons SIDS highly depend on diesel fuel is due to the dispersed population living in remote islands which means, providing electricity through on on-grid system is difficult. Fiji as one of the SIDS, has actively promoted renewable sourced energy through a national plan to mitigate the impacts of climate change. In order to determine how feasible implementing a renewable energy (RE) system will be in Fiji, this study chose a remote island called Mavuva Island to test application of a hybrid RE system using HOMER. A combination of energy storage system (ESS), solar photovoltaic (PV) and diesel generator turns out to be the most cost effective and optimal configuration, resulting in effective greenhouse gas reduction for the given region.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

The Design and Implementation of Automata-based Testing Environments for Multi-thread Java Programs (Java 다중 스레드 프로그램을 위한 오토마타 기반 테스팅 환경의 설계 및 구현)

  • 서희석;정인상;김병만;권용래
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.883-894
    • /
    • 2002
  • Classical deterministic testing controls the execution of concurrent programs based on the equivalence between specifications and programs. However, it is not directly applicable to a situation in which synchronization sequences, being valid but infeasible, are taken into account. To resolve this problem, we had proposed automata-based deterministic testing in our previous works, where a concurrent program is executed according to one of the sequences accepted by the automaton recognizing all sequences semantically equivalent to a given sequence. In this paper, we present the automata-based testing environment for Java multi-thread programs, and we design and implement "Deterministic Executor" in the testing environment. "Deterministic Executor" transforms a Java multi-thread program by applying automata-based deterministic testing, the transformed program presents testing results. "Deterministic Executor" uses "Automata Generator", which generates an equivalent automaton of a test sequence, and "Replay Controller", which controls the execution of programs according to the sequence accepted by the automaton. By illustrating automata-based testing procedures with a gas station example, we show how the proposed approach does works in a Java multi-threaded program.roach does works in a Java multi-threaded program.

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

Photo- and Sonic Degradation of Endosulfans(α, β, and sulfate) in Aqueous Solution (엔도설판류의 광 및 초음파분해)

  • Kwon, Sung Hyun;Kim, Jong Hyang;Cho, Daechul
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • Endosulfan-${\alpha}$ endosulfan-${\beta}$ and endosulfan-sulfate, which are classified as pesticides, were degraded by use of UV energy and ultrasonic irradiation. The degradation residuals were analysed by gas chromatography with an electron capture detector and TOC (total oragnic carbon) analysis. The reactions were conducted in a quartz annular reactor equipped with a low pressure mercury multilamp (8Wx2) and a sonic generator. All the aqueous solutions were concentrated as 10 mg/L initially. Endosulfans were degraded each to result in 48.2% (${\alpha}$), 50.0% (${\beta}$) and 76.5% (sulfate) of removal efficiency by UV energy, and 66.9% (${\alpha}$), 55.8% (${\beta}$) and 72.7% (sulfate) by ultrasonic irradiation, respectively. In contrast to the results of the single-component solutions, degradation of the endosulfan-sulfate was greatly suppressed to result in the lowest degradation rate and removal efficiency in the three-component solutions. This finding suggests that there should be a reversible reaction with a substantially low equilibrium constant between endosulfan-${\alpha}$ or -${\beta}$ and -sulfate in the coexistence of the three endosulfans. TOC data showed the endosulfans were decomposed by 20%~40% toward complete mineralization, producing a quantity of intermediates induced by the radical reactions. We found that all the decay reactions considered in this study nicely fell into pseudo first-order rate.

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.