• Title/Summary/Keyword: gas cutting

Search Result 187, Processing Time 0.192 seconds

A Basic Study of Automatic Rebar Length Estimate Algorithm of Bearing Wall by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 내력벽 철근길이 자동 산정 기초 연구)

  • Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.79-80
    • /
    • 2023
  • Reinforced concrete structures require large amounts of concrete and rebar in the construction stage. Rebar is a major resource for reinforced concrete structures, and generates more CO2 per unit weight than other materials. To solve this problem, it was confirmed that the cutting waste can be close to zero when the special length of the rebar is calculated in the drawing created after structural design. However, a system for automatically calculating the length of reinforcing bars to efficiently calculate the total amount of reinforcing bars has not been established. Therefore, the objective of this study is a basic study of automatic rebar length estimate algorithm of bearing wall by using BIM-based shape codes built in Revit. The bearing wall rebar can be automatically derived using the developed model. Furthermore, through applying the developed model to the construction field, it will greatly contribute to reducing greenhouse gas emissions by reducing rebar cutting waste.

  • PDF

Experimental Study of Characteristics of Assist Gas in Laser Machining Using Supersonic Rectangular Nozzle (초음속 사각노즐을 이용하는 레이저 가공 보조가스의 특성에 관한 실험적 연구)

  • Son, Sang-Hyuk;Jun, Dong-Yeon;Lee, Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • An experimental study to improve the impingement characteristics of the assist gas in laser cutting was carried out. For various assist-gas pressures, and locations and installation angles of the nozzle, the characteristics of the impingement of the jet from a supersonic rectangular nozzle were compared to those previously observed for typical circular nozzles. Schlieren flow visualizations and Pitot pressure measurements downstream of the kerf surface were utilized for this purpose. The present rectangular supersonic nozzle decreased the strength of the Mach disc occurring at the corner of the kerf surface, and thus, could weaken the separation of the assist gas on the kerf surface and increase the Pitot pressures downstream compared to conventional circular nozzles.

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

IN VITRO STUDY ON THE CYTOTOXICITY OF THE DIFFERENTLY STERILIZED DEMINERALIZED BONE POWDER (멸균방법에 따른 탈회동종골의 세포독성 여부에 관한 실험적 연구)

  • Woo, Ki-Sun;Yim, Chang-Joon;Kim, Se-Won;Kim, Jong-Yeo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.3
    • /
    • pp.287-299
    • /
    • 1997
  • Procurement, cutting, cleansing, freezing, freeze-drying, and demineralization of the allogeneic bone must be made under the germ-free stable condition without bacterial and/or viral contamination. Even thought the bone is procured under the germ free condition, we must have confidence on disinfection of all the solutions that come in contact with tissue during the whole procedure. Lots of antibacterial agents have been introduced for chemical sterilization. Recently ethylene oxide gas sterilization or radiation sterilization is frequently selected as a secendary sterilization procedure. The biological and biochemical response of the graft material differs with the type and concentration of the sterilizing agents, and various toxic reactions have been reported due to the graft material itself and the substance released by the chemicals. The authors conducted the Millipore filter test to observe the toxic effect on L929 fibroblasts according to the effect on activity of succinate dehydrogenase, during the secondary sterilization of the demineralized allogeneic bone powder with irradiation or ethylene oxide gas. The result were as follows : 1. Around the copper disk, positive control group, 10mm diameter discoloration was observed. 2. As same as the negative control group, the disk showed no discoloration. 3. The demineralized allogeneic bone which was sterilized with ethylene oxide gas or irradiation showed no cytotoxicity. 4. From this results, it is suggested that treatment with ethylene oxide gas or irradiation should be effective to sterilize the deminineralized allogeneic bone.

  • PDF

Study for Failure Examples of Solenoid Valve, Relay and Idle Speed Control Actuator in Liquid Petroleum Gas vehicle Engines (LPG 자동차 엔진의 솔레노이드밸브, 릴레이, 공회전조절장치의 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon;Cho, Seung-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • The purpose of this paper analyzes and studies to seek the failure examples of electronic control actuators for engine in liquified petroleum gas vehicle. The first, it was verified phenomenon for intial starting damage and no-acceleration of engine because of occasionally fuel feeding interception by clogged of emergency cutting solenoid valve filter. The second, the contact resistance produced in the connecting part of engine control relay because of no fully surface contacting by processes and assembly badness. It was displayed phenomenon of re-starting badness. The actuator that idle speed control system was sticked inside because of intake-air decreasing by carbon deposit. As a result, it was verified the phenomenon of disharmony that repeated up and down the engine revolution.

A Study on Flow Rate Characteristics of a $Annubar^{(R)}$ Type Differential Pressure Flow Meter with a Shape Improvement ($Annubar^{(R)}$형 차압유량계 형상 개선에 따른 유량 특성 연구)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.204-210
    • /
    • 2010
  • The inner structure of the triangular separate bar (TSB) was improved to enhance the productivity of the TSB flow meter by simplifying the machining process for making the flow meter. The cross section of upstream and downstream pressure chamber in the TSB was changed from triangle to circle, which make it possible to substitute the wire cutting by drilling in the process of machining the pressure chamber. The flow rate characteristics of the flow meters was calibrated with a laminar flow meter. Six kinds of flow meters whose diameters of pressure tap for measuring pressure of both upsteam and downstream pressure chamber were different one another were made. The effects of the pressure tap diameter on the flow rate characteristics of the TSB flow meter was little. The mass flow rate characteristics of the flow meters with increasing a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters and atmospheric pressure shows nearly linear relationship with a correlation coefficient of R=0.998.

Characterization of Classification of Synthesized Ni Nanopowders by Pulsed Wire Evaporation Method (전기폭발법에 의해 제조된 Ni 나노분말의 분급 특성)

  • Park, Joong-Hark;Kim, Geon-Hong;Lee, Dong-Jin;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.389-394
    • /
    • 2017
  • Ni wires with a diameter and length of 0.4 and 100 mm, respectively, and a purity of 99.9% are electrically exploded at 25 cycles per minute. The Ni nanopowders are successfully synthesized by a pulsed wire evaporation (PWE) method, in which Ar gas is used as the ambient gas. The characterization of the nanopowders is carried out using X-ray diffraction (XRD) and a high-resolution transmission electronmicroscope (HRTEM). The Ni nanopowders are classified for a multilayer ceramic condenser (MLCC) application using a type two Air-Centrifugal classifier (model: CNI, MP-250). The characterization of the classified Ni nanopowders are carried out using a scanning electron microscope (SEM) and particle size analysis (PSA) to observe the distribution and minimum classification point (minimum cutting point) of the nanopowders.

Study on low-k wafer engraving processes by using UV pico-second laser (Low-k 웨이퍼 레이저 인그레이빙 특성에 관한 연구)

  • Nam, Gi-Jung;Moon, Seong-Wook;Hong, Yoon-Seok;Bae, Han-Seong;Kwak, No-Heung
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.128-132
    • /
    • 2006
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355nm and 80MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow rate, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repetition rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20{\mu}m$ and $10{\mu}m$ at more than 500mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed of laser material process.

  • PDF

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF