• Title/Summary/Keyword: gas cutting

Search Result 187, Processing Time 0.024 seconds

Economic Analysis of Heating and Cooling System Corresponding to the Energy Cost of University Building (대학건물에서 에너지비용 변화에 따른 히트펌프 냉난방시스템에 대한 경제성 분석)

  • Kim, Dong-Wan
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.16 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • This research is to analyze LCC of Heat Pump system in university building by reduction of electric power costs for education and incentive system for gas. Produced details item different expense of EHP and GHP equipment construction step and preservation administration step. Analysis result is as following. 1) Executed LCC analysis for target system after lowering whole curriculum reduction of electric power costs for education. Analysis result, energy cost-cutting effect of EHP appears greatly than GHP unlike existent study finding, EHP decided by economical system. 2) Sensitivity analysis executed by incentive 500,000 won per units and geometrical ration of gas expense by 1%. As a result, because lowering effect of electric charges appears greatly, EHP decided by more economical system than GHP. As research result of front is different from existent study finding, EHP by lowering of electric charges for alteration and education of governmental frequent volunteer system was decided by more economical system than GHP.

Estimation of the Carbon Stock and Greenhouse Gas Removals by Tree Species and Forest Types in Gangwon Province (강원도 산림의 임상별, 수종별 탄소저장량 및 온실가스 흡수량 산정)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • This study was conducted to estimate of carbon stock and greenhouse gas (GHGs) removals by tree species and forest type at Gangwon province. We used a point sampling data with permanent sample plots in national forest inventory and national emission factors. GHGs emissions was caclulated using the stock change method related to K-MRV and IPCC guidance. Total carbon stock and greenhouse gas removals were high in deciduous forest and species than in coniferous. The range of annual net greenhouse gas emissions in other deciduous species was from $-11,564.83Gg\;CO_2\;yr^{-1}$ to $-13,500.60Gg\;CO_2\;yr^{-1}$ during 3 years (2011~2013). On the other hand, coniferous forest was temporally converted to source due to reducing of growing stock in 2012. It was that growing stocks and forest area were likely to reduce by the deforestation and clear cutting. This study did not consider other carbon pools (soil and dead organic matter) due to the lack of data. This study needs to complement the activity data and emission factors, and then will find the way to calculate the greenhouse gas emissions and removals in the near future.

Effect of Sintering Variables on the Microstructure and Mechanical Properties of the Gas Pressure Sintered $Si_3N_4$ ($Si_3N_4$ 가스압 소결체의 미세조직과 기계적 성질에 미치는 공정변수의 영향)

  • 박동수;김해두;정중희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.129-136
    • /
    • 1994
  • Si3N4 with 6w/o Y2O3 and 1.5w/o Al2O3 has been gas pressure sintered and its densification behavior and the effect of the sintering variables on the microstructure and mechanical properties were investigated. Densification rate was higher at temperature below 1775$^{\circ}C$ and between 187$0^{\circ}C$ and 195$0^{\circ}C$ than between 1775$^{\circ}C$ and 187$0^{\circ}C$. The faster densification at temperature between 187$0^{\circ}C$ and 195$0^{\circ}C$ was thought to be due to the increased amount of liquid phase resulting from the increased amount of Si3N4 dissolving in the liquid. $\beta$-Si3N4 and Y-disilicate at temperatures below 1775$^{\circ}C$, and only $\beta$-Si3N4 at 187$0^{\circ}C$ and above were detected by XRD analysis. Three different two-step schedules were employed to obtain sintered body with above 99% theoretical density and to investigate the effect of the sintering variables on the density, the microstructure and the mechanical properties of the sintered body. The sintered density did not change with the heating rate, and the microstructure became coarser as the temperature increased. The strength decreased with the width of $\beta$-Si3N4 grain, while the fracture toughness increased with the square root of it. A ceramic cutting tool made of the sintered body showed an uniform flank wear after the cutting test.

  • PDF

Waste Isolation Pilot Plant Performance Assessment: Radionuclide Release Sensitivity to Diminished Brine and Gas Flows to/from Transuranic Waste Disposal Areas

  • Day, Brad A.;Camphouse, R.C.;Zeitler, Todd R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.450-457
    • /
    • 2017
  • Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

A Study on Improving Extinguishing Capacity of Mobile Water Mist Equipment (이동식 미분무수 소화장비의 소화능력 향상에 관한 연구)

  • Kong, Ha-Sung;Kim, Jong-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • This research has so far found out problems including the second damage of extinguishant and the short time of emission when using the existing dry chemical extinguisher and gas type extinguisher, and impossibility of constant extinguishing due to the inability of recharge at the field. To solve such problems, a mobile water mist system was developed and used. However, it is judged that more improved mobile water mist system is necessary because the force of the fire changed diversely and remote villages in mountains or islands where the force of fire extinguishing is short or delayed, require high capacity of fire extinguishing. Therefore a new equipment was developed and tested focusing on the improvement of extinguishing capacity and the performance of extinguishing was found out to be improved, compared to the existing mobile water mist system. It also showed a superior extinguishing capacity to dry chemical extinguisher or gas type extinguisher. Afterward an additional research is required of simplification of equipment, price cutting and the development of additive to enable high performance even with just small extinguishant.

A Study for Failure Examples Including with Engine Oil Leakage, Poor Contact by Fin Damage and Vaporizer Inferiority on LPG Automotive (LPG 자동차의 엔진오일누설, 핀 손상에 의한 접촉불량, 베이퍼라이저 내부불량으로 인한 고장사례연구)

  • IL Kwon, Lee;Chang Ho, Kook;Sung Hoon, Ham;Seung Yong, Lee;Jae Gang, Lee;Seung Min, Han; Woo Chan, Hwang;Dae Cheon, Jang;Chang Bae, You;Jeong Ho, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.24-29
    • /
    • 2022
  • This paper is a purpose to Analyze and study the failure examples for a engine oil leakage of camshaft bearing seal, poor contact by computer connector fin damage and vaporizer inferiority on LPG automotive. The first example, when the researcher disassembled the cylinder head of engine to establish the cause for oil leakage, he confirmed the engine oil leakage by damaged between the engine intake camshaft bearing and seal part. The second example, the connector fin of power source line that control the starting of a car supplied with engine computer. As a result, it found the fact that the engine operation stopped because of cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phe cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phenomenon as thd gas didn't flow the vaporizer by foreign substance deposit. Finally, it supplied a small quantity gas from vaporizer to mix. As the computer controlling mix opening condition supplied a air as opening signal, the air and fuel became rarefied state. it knew that the engine didn't produce prpper power. Therefore, a car have to throughtly inspect not in order to arise the failure symptoms.

The Basic Study on Machinability of Ceramics in CO2 Laser Assisted Machining (CO2 레이저 보조가공에 의한 세라믹재료의 가공성에 관한 기초 연구)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.322-329
    • /
    • 2009
  • Machinability of LAM(Laser Assisted Machining) has been studied for ceramics such as $Al_2O_3$, $Si_3_N4$ and $ZrO_2$ by $CO_2$ laser. It was possible to remove ceramics by PCBN tool because material became softening and deterioration by local laser beam irradiation. The advantage of LAM is the ability to produce larger material removal rates and tool life. But, for cutting of $Al_2O_3$ and $ZrO_2$, stage of laser power control was needed owing to thermal shock with high temperature of workpiece by laser power. And when $Si_3N_4$ was machined by LAM, $N_2$ gas spouted from surface of one cause of high temperature. Characteristics of LAM were analyzed using pyrometer, dynamometer, SEM and EDS to measure temperature of workpiece surface, cutting force, variation of machining surface and structure of lattice respectively. As the result of this study, it was found that machinability of LAM for ceramics in $CO_2$ laser and mechanism of LAM was different according to the kind of ceramics because of properties of materials.

Development of Laser Process and System for Stencil Manufacturing (레이저 스텐실 가공 시스템 및 공정 기술 개발)

  • Lee, Jae-Hoon;Suh, Jeong;Kim, Jeng-O;Shin, Dong-Sig;Lee, Young-Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.106-113
    • /
    • 2002
  • Stencil is used normally as a mask for seeder pasting on pad of PCB. The objective of this study is to develop stencil cutting system and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width old the cut edge quality were investigated. In order to analyse fille cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. As a result, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial Gerber file for PCB stencil manufacturing.

A Study on Cutting Method of Tungsten Carbide Material Using Hot Machining (고온가공기법을 이용한 초경소재 가공기술에 관한 연구)

  • Choung Y. H.;Cho Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.315-318
    • /
    • 2004
  • The Advantages of hot machining are the reduction of cutting forces, tool wear, and the increase of material removal rates. In this study, a hot-machining characteristics of milling by CBN tip was exprimentely analyzed, and the influence of the surface temperature and the depth of cut on the tool life were investigated. The selection of a heating method for obtaining ideal temperature of metals in machining is important. Faulty heating methods could induce unwanted structural changes in the workpiece and increase the cost. This study uses gas flame heating. It is obtained that tungsten carbide-alloyed has a recrystallisation temperature range of $800-1000^{\circ}C$ which is the high heating temperature that might induce unwanted structural changes. If it is performed at temperatures higher than $800^{\circ}C$ in machining, the possibility of unwanted structural changes and the increased wear of tool can be shown. Consequently, in hot machining of tungsten carbide-alloy, this study has chosen $400^{\circ}C-600^{\circ}C$ because the heating temperature might be appropriate in view of the cost and workpiece considerations. The results of this study experimentally shows a new machining method for tungsten carbide-alloyed that decreases the wear rate of machining tools

  • PDF

Effect of Microstructure on Evaluation of Fracture Toughness and Hardness of Cutting Tool Ceramics (절삭 공구용 세라믹의 소결조직에 따른 파괴인성과 경도의 평가)

  • 안동길;윤명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2000
  • Dense $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramic tool materials with various grain size were produced by sintering-HIP treatment and by gas-pressure sintering. The fracture toughness was measured by indentation fracture and indentation strength method for both ceramics with various grain size. The effect of the grain size on the fracture toughness was evaluated, and the correlation between fracture toughness and mechanical properties such as hardness, Young\`s modulus and flexural strength of these ceramic were also investigated. The highest fracture toughness of around 6.7 MPa.m(sup)1/2 was obtained in Si$_3$N$_4$ ceramics with grain size of 1.58${\mu}{\textrm}{m}$. With a larger grain size of $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramics, the fracture toughness was generally increased. The increased fracture toughness of these ceramic also improved the flexural strength although the hardness decreased considerably. Similar results were obtained in grain size and mechanical properties on both $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramic tool materials.

  • PDF