• 제목/요약/키워드: gap joint

Search Result 255, Processing Time 0.029 seconds

The solution for preventing the expansion of cable joint caused by methane($CH_4$) gas to Water proof type of power cable (도체 수밀형 전력케이블의 가교잔사 가스에 의한 직선접속재 부풀음 현상 방지 대책)

  • Kim, Jong-Won;Lee, Ki-Soo;Paek, Heum-Soo;Choi, Bong-Nam;Park, Hee-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2020-2022
    • /
    • 2000
  • The cross-linked polyethylene(herein after XLPE) insulated power cable emit the methane($CH_4$)gas in the course of chemical cross-linking process. The general stranded conductor easily discharge this methane gas through the gap of each stranded wires. But the special stranded conductor that filled with semi-conducting rubber compound to prevent water penetration which is applied to water proof type of cable(22.9kV CN/CV-W), disturb the methane gas emission. The pre-mold type cable joint shall be expanded gradually by emit of gas left in XLPE insulation. For example, sometimes the corona problem outbreak on a new power distribution line, resulted from the gap between the sleeve and semi-conductive layer of cable joint. If above mentioned problem especially happened on the way of operating. We have to shut down the line and try to discharge the methane gas in cable joint. In this point, we would like to explain the mechanism of methane gas & cable joint and our test result briefly. At last, we are pleased to introduce the solution for preventing reoccurrence of this problem.

  • PDF

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

Load Transfer Behaviors of the Splice-Jointed Fiber Metal Laminates (연결이음 접합된 섬유금속적층판의 하중전달 거동 연구)

  • Roh Hee Seok;Choi Won Jong;Ha Min Su;Choi Heung Soap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.220-227
    • /
    • 2005
  • In this study, stress-displacement analytic solutions are obtained by a shear lag modeling method constructed for the spliced joint area with a splicing gap in the fiber metal laminate (FML). This gap can be empty or be filled with an adhesive material of elastic modulus $E_a$. Two splicing types are considered for spliced shear models, one for spliced in the center metal layer, the other for spliced in the outer metal layer. It is shown that from the viewpoint of the load transfer efficiency and the avoidability of disbond generation due to the shear and axial stresses at the interface between metal layer and composite layer of the gap-front in the spliced area, the center spliced type (k=2) is much preferable to the outer spliced type (k=1).

Estimation of Rail Joint Shape Using Signals Available in a MagLev Train (자기부상열차 계측 신호를 이용한 궤도 조인트 부 형상 추정)

  • Noh, M.;Song, I.;Nam, S.;Park, Y.-W.;Kang, H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.622-624
    • /
    • 2014
  • A maglev train records a host of physical variables such as gaps, voltages and currents for suspension control and monitoring purposes. These data available from a maglev contains wealth of information that can be explored for various uses. One possible of such application is to use the gap data to estimate the shape of the rail, especially at the joints where rails are connected. The eddy current sensors that measure the gap between the rail and the car body produce large peaks around the joints. The suspension controller discards these peaks. Since the shape of the peaks is related to the joint, however, these peaks can be utilized to estimate the shape of the joints. In this paper, we present preliminary results on estimating the joint shape using the peak data. The results show that the approach is promising, albeit several technical difficulties to overcome.

  • PDF

Temporomandibular joint re-ankylosis: a case report and literature review

  • Flora Kalita;Arunkumar KV
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.4
    • /
    • pp.218-222
    • /
    • 2023
  • Re-ankylosis is a common postoperative complication of temporomandibular joint (TMJ) ankylosis surgery. Various surgical options to prevent re-ankylosis, both with and without interpositional material, have been discussed in the literature. However, no standardized protocol has been suggested for management or prevention of TMJ ankylosis. This paper discusses the probable causes behind TMJ re-ankylosis and presents a case of unilateral TMJ re-ankylosis, which was managed by gap arthroplasty using an autologous abdominal dermal fat graft as an interpositional material and closely monitored for signs of relapse. Autologous fat graft acted as an effective barrier between the glenoid fossa and mandibular condyle, thus preventing dead space, hematoma and heterotrophic bone formation. A brief review of the literature and update on TMJ re-ankylosis are also presented.

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Stress Analysis of Double T-Welded Joints Considering External Forces (외력을 고려한 양면 T-용접이음부의 음력해석)

  • 김성환;방한서;방희선;송관형
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.215-220
    • /
    • 2001
  • In the T-joint welding, the complete penetration joint which is obtained by groove welding with edge preparation is generally required thor the safety and reliability of structures but this way have the some defects such as increase of working time, consumed welding electrode quantity and large welding deformation. If there is no probrem, in the strength, T-joint welding without edge preparation will be profitably understood in the economical and welding deformation side. In this paper, we performed the finite element analysis to understand the characteristics of welding residual stresses on two models, complete penetration joint have the edge preparation and incomplete penetration joint without edge preparation, respectively. Especially, we observed the relation between welding residual stress distributed on the notch of gap in the root and external force in the incomplete penetration joint without edge preparation.

  • PDF

A study on gap treatment in EMS type Maglev (상전도 흡입식 자기부상열차에서 공극처리방식에 대한연구)

  • Sung, Ho-Kyung;Jho, Jeong-Min;Lee, Jong-Moo;Kim, Dong-Sung
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.189-197
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF