• Title/Summary/Keyword: gap control

Search Result 1,346, Processing Time 0.054 seconds

Fine Gap Control Using Pneumatic Servo System (공압서보시스템에 의한 미세 간극제어 시스템 설계)

  • 김동환;김영진;정대화
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.45-56
    • /
    • 2002
  • A pneumatic servo system requiring a fine gap control in a photo-electric sensor which is used for a LCD array detection device is introduced. The gap controlled by the pneumatic servo system remains within around 50~80 ${\mu}{\textrm}{m}$, and the system possesses an effect to eliminate undesirable particles on the LCD plate by blowing air out. The air flow rate is initially controlled by a servo valve and expanded by a booster valve, thus the controlled air pressure contributes to maintaining an appropriate gap between the LCD plate and photo-electric sensor An air floating plate of two degrees of freedom is designed and fabricated, and a fine tilting motion control is also implemented by assigning different gap commands. The pressure control and direct gap control are proposed, and each performance is verified experimentally.

The Methods of Rail Joint Detection and Gap Signal Compensation for Levitation Control of Urban Maglev (도시형 자기부상열차 부상제어를 위한 궤도 이음매 검출 및 공극 신호의 보상 방법)

  • Kim, Haeng-Koo;Lee, Jong-Min;Kang, Byung-Kwan;Kim, Kuk-Jin;Kim, Chun-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.922-927
    • /
    • 2007
  • The present urban maglev which has been developed in Korea is controlled by 4-edge control method over each bogie. The control output which is derived from two gap sensors and one vertical acceleration sensor controls magnet to maintain a nominal gap. But, the gap signal acts as a big disturbance in rail joint though two gap sensors are used and finally result in unstable response and poor ride comfort. This paper treats of a method to compensate the gap signal in rail joint for the levitation control of urban maglev. The physically abnormal change of gap is detected when one gap sensor passes a rail joint, the disturbance of gap in rail joint is estimated. Finally the disturbance in gap signal is eliminated by processing the information of vehicle speed and estimated disturbance in when the other gap sensor passes a rail joint.

  • PDF

Analysis of Control Performance in Gap Size of MR Damper (MR Damper의 Gap Size에 따른 제어성능 분석)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • In this study, the flow path width (Gap Size), which is the flow path of fluid, was selected differently among various factors that determine the Ccontrol Force of MR damper, and the change of Control Force was confirmed accordingly. For this purpose, two MR dampers with a Gap Size of 1.0mm and 1.5mm were fabricated, respectively, and dynamic load experiments were conducted according to changes in applied current and vibration conditions The experimental results showed that the minimum Control Force was 3.2 times higher than 1.5mm in the case of 1.0mm Gap Size, and the maximum Control Force was 2.3 times higher than 1.5mm in the case of 1.0mm Gap Size. In addition, the increased width of the Control Force according to applied current was 34N for Gap Size 1.0mm, and 12.7N for Gap Size 1.5mm. As the gap Size increased, the overall Control Force and the increase in the Control Force by the applied current decreased. Next, the dynamic range, which is a performance evaluation index of the semi-active Control device, was 2.3 on average under 1.0mm condition and 2.8 on average under 1.5mm condition, confirming the possibility of utilization as a semi-active Control device.

Fine Gap Control System Design Using Pneumatics servo System

  • Kim, Dong-Hwan;Kim, Young-Jin;Jeong, Dae-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.2-111
    • /
    • 2001
  • The research focuses on controlling a gap to measure the surface defect in semi-conductor fabrication device. The measurement is available accompanying a near field image gap control. In this article, a pneumatic servo system is adopted for the near field gap control. The advantage of the pneumatic servo system is on the preventing the possibility of contacting the device to the wapper surface, fence arising fatal damage. Furthermore, the air from the pneumatic system blows the some particle on the wapper during controlling. The target gap is less than 20 $\mu$m and the gap should keep same amount while the device moves around the surface. The experiment by the pneumatic servo control system is done by employing a simple PID control, and the tracking performance is remarkably verified. The target gap is set from 10 $\mu$m to 100 $\mu$m ...

  • PDF

The roll gap control hydraulic hot strip mill using time delay control method (TDC기법을 이용한 유압식 열연압연기의 롤갭제어)

  • 홍성철;현장환;이정오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1469-1472
    • /
    • 1996
  • Hydraulic Hot Strip Mill (HHSM) rolls materials whose size and stiffness are various. So a roll gap controller for HHSM was designed using TDC(Time Delay Control) method. The performance of the roll gap control was evaluated through computer simulations. The simulation results indicate that TDC method show excellent robustness and tracking properties against PID control method in various rolling conditions.

  • PDF

A Study on Air-gap Control for Transverse Flux Permanent Magnet Type Magnetic Levitation Electromagnet System (횡자속 영구자석형 자기부상전자석 시스템의 공극제어에 관한 연구)

  • Jae-Won Lee;Myeong-Jae Kim;Seon-Hwan Hwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1127-1134
    • /
    • 2023
  • In this paper, we proposes a study on air gap control for magnetic levitation of transverse flux permanent magnet electromagnets. In general, mechanical systems have a high failure rate of bearings. Bearings in particular are problematic because they have high surface wear rate and degradations. To solve this problem, replacing the bearing with a magnetic levitation electromagnet system can provide lightweight and efficiency improvements. However, precise air gap control is essential to control the magnetic levitation electromagnet system. Therefore, in this paper, we identify the instable cause of gap control through a mathematical modeling and verify through experiment a control algorithm that can use compensation.

Wide Air-gap Control for Multi-module Permanent Magnet Linear Synchronous Motors without Magnetic Levitation Windings

  • Bang, Deok-Je;Hwang, Seon-Hwan
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1773-1780
    • /
    • 2016
  • This paper proposes a wide air-gap control method for the multi-module permanent magnet linear synchronous motor (MM-PMLSM) based on independent vector control. In particular, the MM-PMLSM consists of symmetrical multi-module and multi-phase structures, which are basically three-phase configurations without a neutral point, unlike conventional three-phase machines. In addition, there are no additional magnetic levitation windings to control the normal force of the air-gap between each stator and mover. Hence, in this paper, a dq-axis current control applying a d-q transformation and an independent vector control are proposed for the air-gap control between the two symmetric stators and mover of the MM-PMLSM. The characteristics and control performance of the MM-PMLSM are analyzed under the concept of vector control. As a result, the proposed method is easily implemented without additional windings to control the air-gap and the mover position. The effectiveness of the proposed independent vector control algorithm is verified through experimental results.

Improving nano gap control using frequency adaptive peak filter in Solid Immersion Lens-based plasmonic lithography (SIL 기반 플라즈모닉 리소그래피에서 주파수 적응형 필터를 이용한 나노간극 제어의 성능향상)

  • Choi, Guk-Jong;Lim, Geon;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Plasmonic lithography is the latest technique to overcome diffraction limit of previous optical lithography. In the plasmonic lithography, the nano gap between nano metal wave guide and photoresist should be in sub-wavelength region. SIL-based plasmonic lithography is the one of the solutions to maintain small air gap. However, the nano gap control is so sensitive that a little disturbance is able to have a large effect on the nano gap control. So, we analyzed the characteristics of disturbance, and then modified the previous controller to suppress the disturbance. We applied two peak filters which were fixed one and adaptively changeable one. We experimentally confirmed the improvement of the nano gap control, which reduced nano gap error by 30 %. The proposed control will improve the quality of lithography pattern.

Air-gap Control According to Y and Delta Connections of Double-sided Air-gap Permanent Magnet Synchronous Motor with Independent Three-phase Structure (독립 3상 구조를 갖는 이중공극형 영구자석 동기전동기의 Y 및 Delta 결선에 따른 공극제어)

  • Heo, Chan-Nyeong;Hwang, Seon-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • This paper presents air-gap control according to Y and Delta connections of a double-sided air-gap permanent magnet synchronous motor (DA-PMSM) with independent three-phase structure. In particular, the DA-PMSM used in this study can be applied to low-speed and high-torque applications, such as wind turbines, tidal power generations, and electric propulsion ships, because of its modular stators and a rotor with numerous permanent magnets. Unlike conventional three-phase machines, the DA-PMSM has a symmetrical configuration with double-sided air-gap. Therefore, Y/Delta winding connections and serial/parallel configurations between stator modules are possible. To identify the DA-PMSM operating characteristics, mathematical modeling is analyzed according to the Y/Delta connections. Moreover, air-gap control performances by applying the winding connection methods are verified through experimental results.

A Study on the Back Bead control by Using Short Circuit Frequency in GMA Welding of Sheet Metal (박판 GMA 용접에서 단락 주파수를 이용한 이면비드의 제어에 관한 연구)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1995
  • In GMA welding of sheet metal, the short circuit metal transfer mdoe is preferred because of its low heat input and capability of bridging the root gap. The molten electrode is transferred to the workpiece during repectitive short circuit in the model. The waveform of welding current or voltage and the frequency of short circuiting are affected by a number of factors including: magnitude of welding current and voltage, root gap, electrode extension, power supply characteristics, and so on. In this study experimental models were proposed, which are able to determine the relationship between the root gap and short circuit frequency and the relationship between the root gap and appropriate welding speed that produces the good quality of back bead without burn through. Using the experimental models, the root gap can be obtained from measuring the short circuit frequency, and then the appropriate weldig speed to the root gap can be determined. Thus a back bead control system was constructed by controlling the welding speed for maintaining the quality of back bead. The developed system has shown the successful capability of back bead control.

  • PDF