• Title/Summary/Keyword: gantry robot

Search Result 38, Processing Time 0.027 seconds

A Study on Welding Path Finding For The Large Structure Using Kalman Filter (칼만필터를 이용한 초대형 용접구조물의 용접선 추적에 관한 연구)

  • 주해호;이화조;김석환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • In this Paper a basic technique of gantry robot control system has been developed to weld the curved part of a large structure. A welding robot is designed to rotate torch and make the torch angle normal to the welding surface. The Kalman filter is applied to obtain the smooth welding path signal from the noised Sensing data. A welding path finding algorithm has been developed in Turbo-C language.

  • PDF

Development of sub-assembly welding robot system in shipbuilding (선체 소조립 용접용 로봇 시스템 개발)

  • Gang, Seong-Won;Yun, Ho-Jung;Kim, Dong-Ho;Kim, Gang-Uk;Kim, Yeong-Ju;Cha, Ju-Yong;Lee, Sang-Beom;Lee, Jong-Geon;Gwon, Sun-Chang;Kim, Su-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.101-103
    • /
    • 2006
  • DSME has developed Sub-assembly Welding Robot System(SWRS) in order to increase the productivity of arc welding and to improve hazard and unclean environments in shipbuilding. DSME's SWRS includes a number of equipments such as four overhanging 6-axis articulated robot manipulators(10kg pay-load), gantry system, vision system detecting the workpiece automatically, and OLP system using the CAD data and a central control system integrating an anti-collision module. The SWRS was installed in CAS(Component Assembly Shop) of DSME's OKPO shipyard in August 2006, and now SWRS is running well in site.

  • PDF

Optimization of Robot Welding Process of Subassembly Using Genetic Algorithm in the Shipbuilding (유전자 알고리즘을 이용한 조선 소조립 로봇용접공정의 최적화)

  • Park, Ju-Yong;Seo, Jeong-Jin;Kang, Hyun-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.57-62
    • /
    • 2009
  • This research was carried out to improve the productivity in the subassembly process of shipbuilding through optimal work planning for the shortest work time. The work time consist of welding time, moving time of gantry, teaching time of robot and robot motion time. The shortest work time is accomplished by even distribution of work and the shortest welding sequence. Even distribution of work was done by appling the simple algorithm. The shortest work sequence was determined by using GA. The optimal work planning decreased the total work time of the subassembly process by 4.1%. The result showed the effectiveness of the suggested simple algorithm for even distribution of work and GA for the shortest welding sequence.

Development of Automation Program Module for OLP based Industrial Robot Simulation (OLP 기반 산업용 로봇 시뮬레이션을 위한 자동화 프로그램 모듈 개발)

  • Lee, Soo-Jun;Lee, Se-Han;Park, Jong-Keun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2009
  • Interactive Graphic Robotics Integrated Programming(IGRIP) can handle various types of robot models and can exchange graphic or numerical data easily with other CAD software. In a cutting process of shape-steels, however. IGRIP is inconvenient because the users must generate all the tag points manually. In this study we developed an automation program module in order to generate the tag points automatically in IGRIP This program can read and analyze the macro data containing the information for cutting processes of shape-steels and can generate automatically the parts, the devices, the tag points and the Graphic Simulation Language(GSL) program files useful in IGRIP.

Path Planning and Control of an Articulated Robot for Polishing Large Aspherical Surface (대구경 비구면 연마를 위한 다관절 로봇의 경로 계획 및 제어)

  • Kim, Ji-Su;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1387-1392
    • /
    • 2019
  • Aspherical mirrors have lighter weight and better performance than spherical mirrors, but it is difficult to process their shape and measure the processing precision. Especially, large aperture aspherical mirrors mounted on satellites need high processing precision and long processing time. The computerized numerically controlled machine of gantry type has been used in polishing process, but it has difficulties in processing the complex shapes due to the lack of degrees of freedom. In order to overcome this problem we developed a polishing system using an articulated industrial robot. The system consists of tool path generating program, real-time robot monitoring, and control program. We show the performance of the developed system through the computer simulation and actual robot operation.

Residual Vibration Control of High Speed Take-out Robot Used for Handling of Injection Mold Plastic Part (고속운동 플라스틱 금형사출 부품 취출 로봇의 잔류진동 제어)

  • Rhim, Sung-Soo;Park, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1025-1031
    • /
    • 2011
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links, The performance of the take-out robot is determined by the speed of the motion and the positioning accuracy to grab the part out of the mold, As the speed of the robot increases the flexure in the links of the take-out robot becomes more significant and it results in more residual vibration, The residual vibration deteriorates the positioning accuracy and compels the operator to slow down the motion of the robot. The typical method to reduce the vibration in the robot requires stiffening the links and/or slowing down the robot, Vibration control could achieve the desired performance without increasing the manufacturing cost or the operation cost that would be incurred otherwise, Considering the point-to-point nature of the task to be performed by the take-out robot the time-delay command (or input) shaping filter approach would be the most effective control method to be adopted among a few available control schemes. In this paper a direct adaptive command shaping filter (ACSF) algorithm has been modified and applied to design the optimal command shaping filters for various configuration of the take-out robot. Optimal filters designed by ACSF algorithm have been implemented on a take-out robot and the effectiveness of the designed filters in terms of vibration suppression has been verified for multiple positions of the robot.

Experimental Studies of Neural Network Control Technique for Nonlinear Systern (신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구)

  • Im, Sun-Bin;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

Finite Element Analysis for the Safety Assessment of Take-out Robot (취출로봇의 안전성 평가를 위한 유한요소해석)

  • Hong, Hee-Rok;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1241-1246
    • /
    • 2014
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links. In this study, we want to evaluate the safety of the take-out Robot structure through finite element analysis. The take-out Robot is automated robot to transport from one location to another in the molded article. The take-out Robot structure has a 380 kilogram weight, a 1300mm width, a 670.5mm depth and a 670mm height. It confirms the equivalent stress and the deformation of the load and its own weight through weight analysis. It looks for the natural frequency of the take-out robot through modal analysis. It confirms the acceleration, the normal stress and the deformation about the natural frequency of the take-out robot through response analysis. Also It repeats the analysis by changing the structure of the take-out robot, to confirm the results and it is determined whether the safety of the structure. These analysis results are effectively used to reduce the vibration of the take-out robot.

A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis (유한요소해석을 이용한 Gantry Robot의 동특성 및 측정 결과와의 상관관계 연구)

  • Koh, Man Soo;Kwon, Soon Ki;Lee, Soek
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.269-274
    • /
    • 2015
  • According to the development of IT industry, prevalence of AOI equipment is spreading, and also requiring the high resolution of the camera used in the equipment. The weight of the camera is increased to obtain a high resolution, and thus increases the vibration displacement is a problem occurring in the picturing, camera motion control also becomes difficult. In this study, using a finite element analysis program NX/NASTRAN, the transient response of the camera was analysed which is subjected to an impact force due to inertia. The finite element analysis result is correlated with laser interferometer measurement. When AOI equipment is restructuring, the correlated finite element analysis model can be used to verify the authenticity of the new design.