• 제목/요약/키워드: gamma-ray bursts

검색결과 50건 처리시간 0.023초

On the Nature of the Gamma-ray Bursts

  • Hong, Kyung-Ai;Kim, Sug-Whan;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.107-127
    • /
    • 1987
  • Review of the $\gamma$-ray burst phenomena are presented. History of the $\gamma$-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  • PDF

Application of Artificial Neural Networks to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

  • Oh, Sang Hoon;Kim, Kyungmin;Harry, Ian W.;Hodge, Kari A.;Kim, Young-Min;Lee, Chang-Hwan;Lee, Hyun Kyu;Oh, John J.;Son, Edwin J.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We apply a machine learning algorithm, artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. We also evaluate the gravitational-wave data within a few seconds of the selected short gamma-ray bursts' event times using the trained networks and obtain the false alarm probability. We suggest that artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.

  • PDF

From Brown Dwarfs to Gamma Ray Bursts at High Redshift: Overview of Current CEOU Activities

  • 임명신
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • We present the current research activities of the Center for the Exploration of the Origin of the Universe, a center established at Seoul National University with the Creative Research Initiative program. Our activities focus on observational studies of distant objects such as gamma-ray bursts, quasars, and proto-cluster of galaxies, but we also carry out other observational and theoretical studies in related topics. We also developed a new instrument, Camera for Quasars at Early Universe (CQUEAN) in collaboration with Kyunghee University group, and have secured observing facilities such as UKIRT and McDonald 2.1m observatory. Our research highlights include results such as the discovery of high redshift quasars and gamma ray bursts, the discovery of tidal disruption event at z=0.38 and peculiar gamma ray burst events, analysis of proto-clusters of galaxies, the discovery of brown dwarfs, and development of CQUEAN and its usage at the McDonald observatory.

  • PDF

ON SPATIAL DISTRIBUTION OF SHORT GAMMA-RAY BURSTS FROM EXTRAGALACTIC MAGNETAR FLARES

  • Chang, Heon-Young;Kim, Hee-Il
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs). If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of < $V/V_{max}$ > deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of < $V/V_{max}$ > deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (TgO < 0.3 sec) from the BATSE 4B catalog. The value of < $V/V_{max}$ > of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift z', i.e. f>z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of < $V/V_{max}$ >. A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small $z_{max}$.

Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

  • Jo, Yun-A;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.247-256
    • /
    • 2016
  • An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.

Correlation Between Collimation-Corrected Peak Luminosity and Spectral Lag of Gamma-ray Bursts in the Source Frame

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권3호
    • /
    • pp.253-258
    • /
    • 2012
  • We revisit the relation between the peak luminosity $L_{iso}$ and the spectral time lag in the source frame. Since gamma-ray bursts (GRBs) are generally thought to be beamed, it is natural to expect that the collimation-corrected peak luminosity may well correlate with the spectral time lag in the source frame if the lag-luminosity relation in the GRB source frame exists. With 12 long GRBs detected by the Swift satellite, whose redshift and spectral lags in the source frame are known, we computed $L_{0,H}$ and $L_{0,W}$ using bulk Lorentz factors ${\Gamma}_{0,H}$ and ${\Gamma}_{0,W}$ archived in the published literature, where the subscripts H and W represent homogeneous and wind-like circumburst environments, respectively. We have confirmed that the isotropic peak luminosity correlates with the spectral time lag in the source frame. We have also confirmed that there is an anti-correlation between the source-frame spectral lag and the peak energy, $E_{peak}$ (1 + z) in the source frame. We have found that the collimation-corrected luminosity correlates in a similar way with the spectral lag, except that the correlations are somewhat less tight. The correlation in the wind density profile seems to agree with the isotropic peak luminosity case better than in the homogeneous case. Finally we conclude by briefly discussing its implications.

FOREGROUND OF GAMMA-RAY BURSTS (GRBS) FROM AKARI FIS DATA

  • Toth, L. Viktor;Doi, Yasuo;Zahorecz, Sarolta;Agas, Marton;Balazs, Lajos G.;Forro, Adrienn;Racz, Istvan I.
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.113-116
    • /
    • 2017
  • A significant number of the parameters of a gamma-ray burst (GRB) and its host galaxy are calculated from the afterglow. There are various methods obtaining extinction values for the necessary correction for galactic foreground. These are: galaxy counts, from HI 21 cm surveys, from spectroscopic measurements and colors of nearby Galactic stars, or using extinction maps calculated from infrared surveys towards the GRB. We demonstrate that AKARI Far-Infrared Surveyor sky surface brightness maps are useful uncovering the fine structure of the galactic foreground of GRBs. Galactic cirrus structures of a number of GRBs are calculated with a 2 arcminute resolution, and the results are compared to that of other methods.

Jitter Radiation for Gamma-ray Burst Prompt Emission

  • Mao, Ji-Rong
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.48.1-48.1
    • /
    • 2011
  • We utilize the jitter radiation, which is the emission of relativistic electrons in the random and small-scale magnetic field, to investigate the high-energy emissions of gamma-ray bursts (GRBs). Under the turbulent scenario, the random and small-scale magnetic field is determined by the turbulence. We also estimate the acceleration and cooling timescales. We identify that some GRBs are possible cosmic-ray sources.

  • PDF

Physical mechanism of gamma-ray bursts: recent breakthroughs

  • 엄정휘
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.39.1-39.1
    • /
    • 2018
  • Although it is agreed that the gamma-ray bursts (GRBs) invoke highly relativistic jets with bulk Lorentz factors of a few hundreds, the exact physical mechanism producing such powerful gamma-rays still remains debated. Three outstanding and important questions in the field concern (1) the composition of GRB jets (i.e., matter-dominated vs Poynting-flux-dominated), (2) the involved radiative process responsible for the observed gamma-rays (i.e., synchrotron mechanism vs photospheric radiation), and (3) the distance of the emitting region from the central engine where the prompt gamma-rays are released (i.e., ~10^12 cm vs 10^14 cm vs 10^16 cm). I will present recent important breakthroughs that we have made, which answer these three questions.

  • PDF