• 제목/요약/키워드: gamma emission

검색결과 325건 처리시간 0.025초

GALAXY CLUSTERS IN GAMMA-RAYS: AN ASSESSMENT FROM OBSERVATIONS

  • REIMER OLAF
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.307-313
    • /
    • 2004
  • Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.

Effect of the Gamma-Ray Irradiation on the Electric and Optical Properties of SrTiO3 Single Crystals

  • Lee, Y.S.;Lim, Junhwi;Kim, E.Y.;Bu, Sang Don
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1566-1570
    • /
    • 2018
  • We investigated the visible emission property of $SrTiO_3$ (STO) single crystals irradiated with gammy-ray (${\gamma}$-ray) at various total doses up to 900 kGy. The electric and optical absorption properties of the irradiated STO samples were hardly changed with the ${\gamma}$-ray irradiation, compared with those of un-irradiated STO. In contrast, the visible emission near 550 nm increased with the ${\gamma}$-ray dose increasing. While the development of the visible emission was indicative of the increase of oxygen vacancies inside STO by the ${\gamma}$-ray irradiation, the newly generated oxygen vacancies were not significantly harmful to the electric and optical properties of STO. We concluded that the STO single crystal should have a good tolerance against the damage by the ${\gamma}$-ray irradiation.

Gamma-ray Emission from Globular Clusters

  • Tam, Pak-Hin T.;Hui, Chung Y.;Kong, Albert K. H.
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

GAMMA-RAY EMISSION FROM BLAZARS

  • TAKAHARA FUMIO
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.99-102
    • /
    • 1996
  • I discuss implications of gamma-ray emission from blazars based on electron acceleration by shock waves in a relativistic jet. The number spectrum of electrons turns out to be a broken power law; while at low energies the power law index has a universal value of 2, at high energies it steepens to an index of 3 because of strong radiative cooling. This spectrum can basically reproduce the observed spectral break between X-rays and gamma-rays. I show that energetics of relativistic jets can be well explained by this model. I estimate physical quantities of the relativistic jets by comparing the prediction with observations. The results show that the jets are particle dominated and are comprised of electron-positron pairs. A connection between gamma-ray emission and radiation drag is also discussed.

  • PDF

Gamma-ray emission from millisecond pulsars - an Outergap perspective

  • Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.153-158
    • /
    • 2013
  • In this review paper we explain the following gamma-ray emission features from the millisecond pulsars. (1) Why is the dipolar field of millisecond pulsars so weak but the magnetic pair creation process may still be able to control the size of the outergap? (2) A sub-GeV pulse component could occur in the vicinity of the radio pulse of millisecond pulsars. (3) Orbital modulated gamma-rays should exist in the black widow systems for large viewing angle.

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

산소 플라즈마 처리후의 이차전자방출계수(γ)를 이용한 MgO 보호막의 일함수(φW) 변화 (Work Function Changes on MgO Protective Layer after O2plasma Treatment from Ion-induced Secondary Electron Emission Coefficient)

  • 정재천;유세기;조재원
    • 한국전기전자재료학회논문지
    • /
    • 제18권3호
    • /
    • pp.259-263
    • /
    • 2005
  • The changes in secondary electron emission coefficient(${\gamma}$) and work function($\Phi$$_{\omega}$) have been studied on the surface of MgO protective layer aster plasma(Ar. $O_2$) treatment using ${\gamma}$-focused ion beam (${\gamma}$-FIB) system. The values of ${\gamma}$ varied as follows: $O_2$-treated MgO > Ar-treated MgO > Non-treated MgO, and the work functions varied in the reverse order. The result indicates that both the physical etching and the chemical reaction of $O_2$-plasma removed the contaminating materials from the surface of MgO.

Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

  • Owocki, Stan;Okazaki, Atsuo;Romero, Gustavo
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권1호
    • /
    • pp.51-55
    • /
    • 2012
  • A few high-mass X-ray binaries-consisting of an OB star plus compact companion-have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE; up to 30 TeV) ${\gamma}$-rays. This paper focuses on the prominent ${\gamma}$-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical ($e{\approx}0.24$) orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of ${\gamma}$-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of ${\gamma}$-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the ${\gamma}$-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE ${\gamma}$-ray emission in massive-star binaries.

Relationship between Secondary Electron Emissions and Film Thickness of Hydrogenated Amorphous Silicon

  • Yang, Sung-Chae;Chu, Byung-Yoon;Ko, Seok-Cheol;Han, Byoung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.185-189
    • /
    • 2004
  • The temporal variation of a secondary electron emission coefficient (${\gamma}$ coefficient) of hydrogenated amorphous silicon (a-Si:H) was investigated in a dc silane plasma. Estimated ${\gamma}$ coefficients have a value of 2.73 ${\times}$ 10$^{-2}$ on the pure aluminum electrode and 1.5 ${\times}$ 10$^{-3}$ after 2 hours deposition of -Si:H thin films on a cathode. It showed an abrupt decrease for about 30 minutes before saturation. The variation of the ${\gamma}$ coefficient was estimated as a function of the thin film thickness, and the film thickness was about 80 nm after 30 minutes deposition time. These results are compared with the results of a computer simulation for ion penetration into a cathode.

Exploring the Extra Component in the Gamma-ray Emission of the New Redback Candidate 3FGL J2039.6-5618

  • Ng, Cho-Wing;Cheng, Kwong-Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.93-99
    • /
    • 2016
  • A redback system is a binary system composed of a pulsar and a main sequence star. The inverse Compton (IC) scattering between the stellar soft photons and the relativistic pulsar wind will generate orbital-modulating GeV photons. We look for these IC emissions from redback systems. A multi-wavelength observation of an unassociated gamma-ray source, 3FGL J2039.6-5618, by Salvetti et al. (2015) detected an orbital modulation with a period of 0.2 days in both X-ray and optical cases. They suggested 3FGL J2039.6-5618 to be a new redback candidate. We analyzed the gamma-ray emission of 3FGL J2039.6-5618 using the data from the Fermi large area telescope (Fermi-LAT) and obtained the spectrum in different orbital phases. We propose that the spectrum has orbital dependency and estimate the characteristic energy of the IC emission from the stellar-pulsar wind interaction.