• 제목/요약/키워드: galaxy : formation and evolution

검색결과 215건 처리시간 0.024초

Identifying Cluster Candidates in CFHTLS W2 Field

  • Paek, Insu;Im, Myungshin;Kim, Jae-Woo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • Recent studies of galaxy clusters have shown that the galaxy clusters in dense environment tend to have lower star formation rate in local universe with z < 1. However, this correlation is not significant in galaxy clusters with z > 1. The study of galaxy clusters around z=1 can yield insight into cosmological galaxy evolution. Nevertheless, the identification of galaxy clusters beyond the scope of immediate local universe requires wide field data in optical and near-infrared bands. By incorporating data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS) and Infrared Medium-Deep Survey(IMS), the photometric redshifts of galaxies in CFHTLS W2 field were calculated. Using spatial distribution and photometric redshifts, the galaxies in the field were divided into redshift bins. The image of each redshift bin was analyzed by measuring the number density within proper distance of 1Mpc. By comparing high density regions in consecutive redshift bins, we identified the cluster candidates and mapped the large-scale structure within the CFHTLS W2 field.

  • PDF

CHEMICAL EVOLUTION OF THE GALAXY: RADIAL PROPERTIES

  • PARK BYEONG-GON;KANG YONG HEE;LEE SEE-WOO
    • 천문학회지
    • /
    • 제29권1호
    • /
    • pp.63-73
    • /
    • 1996
  • The previous study of chemical evolution of the Galaxy is extended to the radial properties of the Galactic disk. The present model includes radial dependency of the time-dependent bimodal IMF, radial flow of material in the disk, and the change of type I supernova explosion rate with radial distance from the disk center as model parameters and observed gas and stellar density distributions and metallicity abundance gradient as observational constraints. The results of two models in this study explain the observed gas and stellar density distributions well, with the slope of the gas density gradient in the region of 4.5 kpc$Y_1$ and -0.123dex/kpc in model $Y_2$, respectively, which fit well the observed gradient of -0.l1dex/kpc. The abundance gradient reproduced in model $Y_1$ is getting flatter with decreasing radius, while that in model $Y_2$ is getting steeper, which fits better the observed abundance gradient. This result shows the necessity of exponentially increasing type I supernova explosion rate with decreasing radius in order to explain the observed abundance gradient in the disk. The fitness of observed density distribution and star formation rate distribution justifies the reliability of time-dependent bimodal IMF as a compound quantitative chemical evolution model of the Galaxy. The temporal variations of metallicity gradients for carbon, nitrogen and oxygen are also shown.

  • PDF

What Do MIR Properties of Galaxies in the Coma Supercluster Tell Us?

  • 이광호;이명균
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.76.3-77
    • /
    • 2015
  • MIR colors are an excellent tool to investigate the transition phase of galaxy evolution in terms of star formation at various phases. The Coma supercluster is the nearest massive supercluster, hosting two main clusters, the Coma (Abell 1656) and Leo (Abell 1367) clusters, and one galaxy group, the NGC 4555 group, providing an ideal laboratory to study how galaxies evolve depending on environment. We present the results of a study for MIR properties of galaxies in the Coma supercluster using multi-wavelength data from the optical to MIR including the Sloan Digital Sky Survey Data Release 12 and the Wide-field Infrared Survey Explorer. We investigate differences in MIR properties of galaxies among three galaxy systems, and discuss the results in relation with star formation history and morphological transformation of galaxies.

  • PDF

High redshift clusters of galaxies

  • Kim, Jae-Woo;Im, Myungshin;Lee, Seong-Kook;Jeon, Yiseul;Hyun, Minhee
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.69.2-69.2
    • /
    • 2013
  • A galaxy cluster is an important laboratory to study the large scale structure in the Universe and the galaxy evolution. In order to identify candidate galaxy clusters at z~1, we have used deep and wide optical-NIR datasets based on IMS, UKIDSS DXS and CFHTLS wide covering ${\sim}20deg^2$ in the SA22 field. We measure the angular two-point correlation function of the candidate clusters and investigate the star formation activity of the member galaxies. Based on bias factor and halo mass function, candidate clusters have the average halo mass of > $10^{14}h^{-1}M_{\odot}$. At z~1, the star formation rate of cluster galaxies is similar to that of field galaxies, which indicates the environmental quenching is not so significant at z~1 as the local Universe.

  • PDF

THE INITIAL CONDITIONS AND EVOLUTION OF ISOLATED GALAXY MODELS: EFFECTS OF THE HOT GAS HALO

  • Hwang, Jeong-Sun;Park, Changbom;Choi, Jun-Hwan
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.1-32
    • /
    • 2013
  • We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.

Hubble Space Telescope's Near-IR and Optical Photometry of Globular Cluster Systems in the Fornax and Virgo Clusters of Galaxies

  • Cho, Hyejeon;Blakeslee, John P.;Lee, Young-Wook
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.69.2-69.2
    • /
    • 2014
  • We present space-based near-IR (NIR) and optical photometry of globular clusters (GCs) of 16 early-type galaxies in the Fornax and Virgo Clusters. The NIR imaging data for the nearby galaxies was acquired with the IR Channel of the Wide Field Camera 3 (WFC3/IR) in the F110W ($J_{110}$) and F160W ($H_{160}$) bandpasses. We introduce the full sample of our WFC3/IR program, describe data reductions and photometric measurements including GC candidate selection criteria, and then show selected GCs' color-magnitude diagrams. The tilted features in the diagrams related to the morphological types of host galaxies are discussed in the context of galaxy formation and evolution histories. Combining F475W ($g_{475}$) and F850LP ($z_{850}$) data taken from the Advanced Camera for Surveys Virgo and Fornax Cluster Surveys with our NIR data, we investigate the bimodality in optical-NIR color distribution and the nonlinear feature of the optical-NIR color relation as a function of optical color for these extragalactic GC systems.

  • PDF

Chemical Properties of Star Forming Galaxies in the Cluster Environment

  • 정지원;이수창;김석;성언창
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • We utilize Sloan Digital Sky Survey DR7 spectroscopic data of ~340 star forming galaxies in the Virgo cluster to investigate their chemical properties depending on the environments. The chemical evolution of galaxies is linked to their star formation histories (SFHs), as well as to the gas interchange in different environments. In this sense, galaxy metallicity could be an observable parameter providing information on the impact of the environment on the galaxy SFH and/or the galaxy gas content. Thus, we derived gaseous metallicity (e.g., oxygen abundance) of star forming galaxies located in different regions of the Virgo cluster using well-known empirical calibrations. We also estimated their star formation rate (SFR) using H alpha luminosity. Inorder to investigate the chemical properties of these galaxies, we examined relations between various parameters: metallicity vs. luminosity, SFR vs. luminosity, and metallicity vs. cluster-centric radius. From our results, we discuss environmental effects of cluster to the chemical properties of star forming galaxies.

  • PDF

A case study of extraplanar molecular gas in a Virgo spiral using the ALMA

  • Lee, Bumhyun;Chung, Aeree
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.61.3-62
    • /
    • 2016
  • NGC 4522 is a spiral galaxy located in the Virgo cluster which appears to be undergoing active ram pressure stripping due to the intracluster medium (ICM). What makes this galaxy special is the extraplanar CO gas, some of which coincides with the extraplanar $H{\alpha}$ patches. As one of the few cases where the interstellar molecular gas is thought to have been pushed out from the stellar disk by the ICM, this galaxy provides an opportunity to study the impact of ICM pressure on the dense/star forming gas and its fate in the extraplanar space after stripping. In order to probe detailed molecular gas properties inside and outside the stellar disk and the associated star formation activities, we have observed NGC 4522 in 12CO (1-0) and 13CO (1-0) using the ALMA. We have targeted two regions, one around the center of the galaxy and one centered on the peak of the extraplanar CO, detecting both lines in both regions. Particularly, this is the first case where 13CO gas has been detected outside the stellar disk in a galaxy undergoing ram pressure stripping. In this work, we present preliminary results from the ALMA observations and discuss the evolution of molecular gas properties and star formation activities inside and outside the stellar disk.

  • PDF

DARK MATTER CONTENT IN GLOBULAR CLUSTER NGC 6397

  • Shin, Jihye;Kim, Sungsoo S.;Lee, Young-Wook
    • 천문학회지
    • /
    • 제46권4호
    • /
    • pp.173-181
    • /
    • 2013
  • We trace the dynamical evolution of dark matter (DM) content in NGC 6397, one of the native Galactic globular clusters (GCs). The relatively strong tidal field (Galactocentric radius of ~ 6 kpc) and short relaxation timescale (~0.3 Gyr) of the cluster can cause a significant amount of DM particles to evaporate from the cluster in the Hubble time. Thus, the cluster can initially contain a non-negligible amount of DM. Using the most advanced Fokker-Planck (FP) method, we calculate the dynamical evolution of GCs for numerous initial conditions to determine the maximum initial DM content in NGC 6397 that matches the present-day brightness and velocity dispersion profiles of the cluster. We find that the maximum allowed initial DM mass is slightly less than the initial stellar mass in the cluster. Our findings imply that NGC 6397 did not initially contain a significant amount of DM, and is similar to that of NGC 2419, the remotest and the most massive Galactic GC.

THE EVOLUTION OF A SPIRAL GALAXY: THE GALAXY

  • Lee, See-Woo;Park, Byeong-Gon;Kang, Yong-Hee;Ann, Hong-Bae
    • 천문학회지
    • /
    • 제24권1호
    • /
    • pp.25-53
    • /
    • 1991
  • The evolution of the Galaxy is examined by the halo-disk model, using the time-dependent bimodal IMF and contraints such as cumulative metallicity distribution, differential metallicity distribution and PDMF of main sequence stars. The time scale of the Galactic halo formation is about 3Gyr during which the most of halo stars and metal abundance are formed and ${\sim}95%$ of the initial halo mass falls to the disk. The G-dwarf problem could be explained by the time-dependent bimodal IMF which is suppressed for low mass stars at the early phase (t < 1Gyr) of the disk evolution. However, the importance of this problem is much weakened by the Pagel's differential metallicity distribution which leads to less initial metal enrichment and many long-lived metal-poor stars with Z < $1/3Z_{\odot}$ The observational distribution of abundance ratios of C, N, O elements with respect to [Fe/H] could be reproduced by the halo-disk model, including the contribution of iron product by SNIs of intermediate mass stars. The initial enrichment of elements in the disk could be explained by the halo-disk model, resulting in the slight decrease and then the increase in the slopes of the [N/Fe]- and [C/Fe]-distributions with increasing [Fe/H] in the range of [Fe/H] < -1.

  • PDF