• Title/Summary/Keyword: galaxy: center

Search Result 335, Processing Time 0.021 seconds

Quantifying galactic morphological transformations in the cluster environment

  • Cervantes-Sodi, Bernardo;Park, Chang-Bom;Hernandez, X.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • We study the effects of the cluster environment on galactic morphology by defining a dimensionless angular momentum parameter ld, to obtain a quantitative and objective measure of galaxy type. The use of this physical parameter allows us to take the study of morphological transformations in clusters beyond the measurements of merely qualitative parameters, e.g. S/E ratios, to a more physical footing. To this end, we employ an extensive SDSS sample, with galaxies associated with Abell galaxy clusters. The sample contains 93 relaxed Abell clusters and over 34,000 individual galaxies. We find that the median ld value tends to decrease as we approach the cluster center, with different dependences according to the mass of the galaxies and the hosting cluster; low and intermediate mass galaxies showing a strong dependence, while massive galaxies seems to show, at all radii, low ld values. By analysing trends in ld as functions of the nearest galactic neighbour environment, clustercentric radius and velocity dispersion of clusters, we can identify clearly the leading physical processes at work. We find that in massive clusters (s > 700 km/s), the interaction with the cluster central region dominates, whilst in smaller clusters galaxy-galaxy interactions are chiefly responsible for driving galactic morphological transformations.

  • PDF

A Study of AGN Population in Compact Groups of Galaxies

  • Sohn, Jubee;Hwang, Ho Seong;Lee, Myung Gyoon;Lee, Gwang-Ho;Lee, Jong Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2013
  • We present a result of a statistical studies on nuclear activities of compact group galaxies. It is suggested that the galaxy interaction can trigger the nuclear activity by producing the gas inflow to the center of galaxies. To understand the connection between galaxy interaction and nuclear activity, we study the fraction of Active Galactic Nuclei (AGN) host galaxies in compact groups, known as the most favored environment for galaxy interaction. We select 59 spectroscopically confirmed compact groups in the SDSS DR6. Using the emission line ratio, we determine the spectral types of compact group galaxies and obtain the fraction of AGN-host galaxies. We compare this fraction with those in other galaxy environments. For the early type galaxies, we find that the AGN fraction of compact group galaxies are lower than field galaxies, but higher than cluster galaxies. On the other hand, the AGN fraction of compact group galaxies is similar to those for field and cluster environment for the late type galaxies. Implications of this result will be discussed.

  • PDF

Cosmological Origin of Satellites around Isolated Dwarf Galaxies

  • Chun, Kyungwon;Shin, Jihye;Smith, Rory;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2019
  • We trace the cosmological origin of satellites around isolated dwarf galaxies using a very high resolution (12 pc/h) cosmological hydrodynamic zoom simulation. To realistically describe the formation and evolution of small-mass stellar satellites, our model includes a full baryonic physics treatment. We find that the mini-halos form objects resembling dwarf galaxies. The majority of their star forming gas is accreted after reionization, thus the survival of a mini-halo's gas to reionization is not an important factor. Instead, the key factor seems to be the ability for a mini-halo to cool its recently accreted gas, which is more efficient in more massive halos. Although the host galaxy is only a dwarf galaxy itself, we find that ram pressure is an efficient means by which accreted mini-halos lose their gas content, both by interacting with hot halo gas but also in direct collisions with the gas disk of the host. The satellites are also disrupted by the tidal forces near the center of the host galaxy. Compared to the disrupted satellites, surviving satellites are relatively more massive, but tend to infall later into the host galaxy, thus reducing the time they are subjected to destructive environmental mechanisms and dynamical friction.

  • PDF

Dust scattering simulation of far-ultraviolet light in the Milky Way

  • Jo, Young-Soo;Seon, Kwang-Il;Witt, Adolf N.;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.48.2-48.2
    • /
    • 2019
  • Light from universe is absorbed, scattered, and re-released by interstellar dust before it reaches us. Therefore, accurate correction of the observed light requires not only spatial distribution of interstellar dust, but also information on absorption and scattering for each wavelength. Far-ultraviolet (FUV) light is mainly produced by bright, young O-type and some B-type stars, but it is also observed in interstellar space without these stars. Called FUV Galactic light (DGL), these lights are mostly known as starlight scattered by interstellar dust. With the recent release of GAIA DR2, not only accurate distance information of stars in our Galaxy, but also accurate three-dimensional distribution maps of interstellar dust of our Galaxy were produced. Based on this, we performed 3-dimensional Monte Carlo dust scattering radiative transfer simulations for FUV light to obtain dust scattered FUV images and compared them with the observed FUV image obtained by FIMS and GALEX. From this, we find the scattering properties of interstellar dust in our Galaxy and suggest the intensity of extragalactic background light. These results are expected to aid in the study of chemical composition, size distribution, shape, and alignment of interstellar dust in our Galaxy.

  • PDF

Bar Formation and Enhancement of Star Formation in Disk Galaxies in Interacting Clusters

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2020
  • A merger or interaction between galaxy clusters is one of the most violent events in the universe. Thus, an interacting cluster is an optimum laboratory to understand how galaxy properties are influenced by a drastic change of the large-scale environment. Here, we present the observational evidence that bars in disk galaxies can form by cluster-cluster interaction and the bar formation is associated with star-formation enhancement. We investigated 105 galaxy clusters at 0.015

  • PDF

A Feature of Tidal Tails around Selective Globular Clusters in the Galactic Halo and Bulge

  • Chun, Sang-Hyun;Jung, Mi-Young;Han, Mi-Hwa;Chang, Cho-Rhong;Sohn, Young-Jong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.38.1-38.1
    • /
    • 2008
  • Tides caused by the Galactic gravitational field affect the current dynamical structure of globular clusters in the Galaxy. Indeed, the observed feature of tidal tails stretching beyond globular clusters' tidal radii provides a key information of interaction with the gravitational field of the Galaxy and kinematical orbit of the clusters, which can be an evidence of the merging scenario of the Galaxy formation and evolution. To find such a tidal feature, we have studied spatial density distribution of stars around five globular clusters in the Galactic halo and one cluster in the Galactic bulge, for which we have used wide-field deep photometric data of gri and JHK bands obtained from the MegaCam and WIRCam of the CFHT. Applying the statistical contrast filtering of field stars in the color-magnitude plane of detected stars around five halo clusters, we have found features of tidal tails for four clusters M53, M15, NGC 5053, and NGC 5466. The detected over-density tidal features are well aligned with the cluster's orbits and stretched into the direction of the Galactic center. Statistical analysis indicate that these tidal tails are believed to be cluster stars that have escaped due to the tidal effects to the clusters. A similar tidal feature to that of halo clusters is also detected for the bulge cluster NGC 6626, while the over-density feature seems to be extended into the Galactic plane rather than into the orbital direction and the Galactic center. Conclusively, our result adds further observational evidence of the merging scenario of the Galaxy formation and evolution.

  • PDF

THE MASS DISTRIBUTION IN THE VICINITY OF THE GALACTIC CENTER

  • MCGREGOR PETER J.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.119-122
    • /
    • 1996
  • The case for a massive black hole in the center of the Galaxy is reassessed using improved modeling techniques and observational data. A dark mass of ${\~}{\times} 10^6$ Mo is present within 0.2 pc of the Galactic center. However, the available data can be modeled, without appealing to a massive black hole, using an extended distribution of dark stellar remnants (neutron stars and stellar mass black holes) provided that the stellar initial mass function in the central parsec is deficient in stars less massive than $\~$1 Mo. Such a situation may be a natural consequence of repeated gas build-up followed by starbursts in the central region. A clear distinction between this and the massive central black hole model cannot be made using red giant tracers outside 0.2 pc due to uncertainties in the radial velocity dispersion distribution. The cluster of massive early-type emission-line stars in the central parcsec more effectively probe the mass distribution close to Sgr A $\ast$, but their small number and partial rotational support complicate mass determinations. Proper motion determinations for stars within 0.5' of Sgr A$\ast$ may be the most effective means of unambiguously determining the mass distribution in the immediate vicinity of the Galactic center.

  • PDF

A SURFACE PHOTOMETRY OF NEARBY GALAXIES: M106, M31 AND M33

  • Ann, H.B.;Yu, K.L.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 1981
  • Photoelectric drift scans of nearby galaxies, M106, M31 and M33 have been made at diurnal rate with the 61cm Cassegrain Reflector at Sobacksan Observing Station. Luminosity profiles of M106 and M31 show the asymmetries between east and west sides of the galaxies and the near side of each galaxy exhibits a larger B-V color than the far side. B-V color distribution in the central part of MI06 shows somewhat unusual feature of a blue center with red surrounding regions, and this is an opposite trend to the ordinary color distribution of most of external galaxies. B-V color of M31 is nearly constant in the central part of the galaxy while U-B color decreases as the distance from the center increases.

  • PDF

A New Hydrodynamic Simulation Using Unstructured Moving Meshes

  • Yun, Kiyun;Yoon, Suk-Jin;Kim, Juhan;Kim, Sungsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2015
  • We present a new hydrodynamic simulation based on the unstructured moving mesh scheme. The simulation utilizes the Voronoi tessellation technique that produces polygonal cells composed of, on average, 13 surfaces each in 3D. We devise the incremental expanding method (IEM) and hybrid-neighbor searching algorithm and achieve the CPU time just proportional to the number of particles, i.e., O(N). We show the results of requisite tests for hydrodynamic simulations and demonstrate superiority of our code over the conventional codes using the stationary meshes. The applications in the context of cosmological and galactic simulations are also discussed.

  • PDF

Nonlinear Color-Metallicity Relations of Globular Clusters: an Observational Approach

  • Kim, Hak-Sub;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2015
  • The origin of globular cluster (GC) color bimodality, which is one of the salient phenomena observed in most large galaxies, has not yet been fully resolved. The phenomenon has conventionally been interpreted as a bimodal metallicity distribution based on an assumption of linear GC color-metallicity relations (CMRs). Recent studies however suggest that nonlinear GC CMRs can cause a bimodal color distribution even from a single-peaked metallicity spread. Using photometric and spectroscopic data on GCs in NGC 5128 (Cen A) and NGC 4594 (Sombrero), we investigate the nonlinearity of GC CMRs and compare the observed GC CMRs with the predictions of stellar population simulation models. Our careful selection of old GCs effectively reduces the scatter and reveals the nonlinear nature of the GC CMRs for various colors. The overall shape of the observed CMRs agrees well with that of the modeled CMRs, while offsets are present for some colors. We discuss the implications of our results in terms of the GC color bimodality and GC formation in NGC 5128 and NGC 4594.

  • PDF