• Title/Summary/Keyword: galaxies:disk

Search Result 164, Processing Time 0.025 seconds

On the origin of escape fractions of ionizing radiation from star-forming galaxies at high redshift

  • Yoo, Taehwa;Kimm, Taysun;Rosdahl, Joakim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2019
  • The physical origin of low escape fractions of ionizing radiation derived from Lyman-break galaxies (LBGs) at z ~ 3 - 4 is a puzzle in the theory of reionization. We perform idealized disk galaxy simulations to investigate how galactic properties, such as metallicity and gas mass, affect the escape of Lyman continuum (LyC) photons using radiation-hydrodynamic code RAMSES-RT, with strong stellar feedback. We find that the luminosity-weighted escape fraction from a metal-poor (Z=0.002) galaxy embedded in a halo of mass Mh ~ 1011 M is 〈f3Desc〉 ~ 8%. However, when the gas metallicity is increased to Z=0.02, the escape fraction is significantly reduced to 〈f3Desc〉 ~ 1%, as young stars are enshrouded by their birth clouds for a longer period of time. On the other hand, increasing the gas mass by a factor of 5 leads to 〈f3Desc〉 ~ 4%, as LyC photons are only moderately absorbed by the thicker disk. Our experiments seem to suggest that high metallicity is primarily responsible for the low escape fractions observed from LBGs, supporting the scenario in which the escape fraction has a negative correlation with halo mass. Indeed, our simulated galaxy with the typical metallicity of LBGs (Z=0.006) shows the relative escape fraction of 8%, consistent with recent observations of galaxies with M1500 = -20.

  • PDF

STAR FORMATION ACTIVITY OF GALAXIES UNDERGOING RAM PRESSURE STRIPPING IN THE VIRGO CLUSTER

  • Mun, Jae Yeon;Hwang, Ho Seong;Lee, Myung Gyoon;Chung, Aeree;Yoon, Hyein;Lee, Jong Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.17-35
    • /
    • 2021
  • We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on H i morphology, H i deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines H i mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4]-[12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of H i gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution H i imaging.

Long lived spiral structures in galaxies

  • Saha, Kanak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2017
  • Spiral structure in disk galaxies is modeled with ncollisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for about 5 Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre Q parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance. In addition to these, we also report a few more cases where two-armed spirals are developed and are maintained for a several rotation time scales.

  • PDF

POPULATION SYNTHESIS MODELS FOR NORMAL GALAXIES WITH DUSTY DISKS

  • Suh, Kyung-Won;Kim, Mi-Ryang
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.175-184
    • /
    • 2003
  • To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997) to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history). We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

SOME CURRENT ISSUES IN GALAXY FORMATION

  • Silk, Joseph
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.53-58
    • /
    • 2010
  • The origin of the galaxies represents an important focus of current cosmological research, both observational and theoretical. Its resolution involves a comprehensive understanding of star formation and evolution, galaxy dynamics, supermassive black holes, and the cosmology of the very early universe. In this paper, I will review our current understanding of galaxy formation and review some of the challenges that lie ahead. Specific issues that I address include the galaxy luminosity function, feedback by supernovae and by AGN, and downsizing. I argue that current evidence favours two distinct modes of star formation in the early universe, in order to account for the origin of disk and massive spheroidal galaxies. However perhaps the most urgent need is for a robust theory of star formation.

EVOLUTION OF SELF-GRAVITATING GAS DISKS UNDER THE INFLUENCE OF A ROTATING BAR POTENTIAL

  • YUAN CHI;YEN DAVID C. C.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.197-201
    • /
    • 2005
  • It is well known that a rotating bar potential can transport angular momentum to the disk and hence cause the evolution of the disk. Such a process is particularly important in disk galaxies since it can result in fuelling AGNs and starburst ring activities. In this paper, we will present the numerical simulations to show how this mechanism works. The problem, however, is quite complicated. We classify our simulations according to the type of Lindbald resonances and try to single out the individual roles they play in the disk evolution. Among many interesting results, we emphasize the identification of the origin of the starburst rings and the dense circumnuclear molecular disks to the instability of the disk. Unlike most of the other simulations, the self-gravitation of the disk is emphasized in this study.

Two Populations in Young Radio Galaxies

  • Woo, Jong-Hak;Son, Dong-Hoon;Kim, Sang-Chul;Park, Dae-Seong;Kawakatu, Nozomu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2012
  • We investigate the disk-jet connection of Young Radio Galaxies (YRGs) by comparing emission-line properties with radio luminosity and jet size. By combining new optical spectra for 21 objects with SDSS archival data for 15 objects, we selected a sample of 36 low-redshift YRGs at z < 0.4. We find that YRGs are classified in high- and low-excitation galaxies based on the relative strength of high-to-low excitation line strengths, suggesting that there are two populations in YRGs as similarly found in large radio galaxies, i.e., FRIs and FRIIs. High-excitation galaxies (HEGs) have higher emission line luminosities than low-excitation galaxies (LEGs) at fixed black hole mass and radio luminosity, suggesting that the Eddington ratio is higher in HEGs than in LEGs and that for given radio activity HEGs have higher accretion activity than LEGs. The difference between HEGs and LEGs is probably due to either mass accretion rate or radiative efficiency.

  • PDF

Non-axisymmetric Features of Dwarf Elliptical Galaxies

  • Kwak, Sungwon;Kim, Woong-Tae;Rey, Soo-Chang;Kim, Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.39.3-39.3
    • /
    • 2016
  • About one tenth of dwarf elliptical galaxies found in the Virgo cluster have a disk component, and some of them even possess substructures such as bars, lens, and spiral arms. We use N-body simulations to study the formation of these non-axisymmetric features in disky dwarf elliptical galaxies. By mimicking VCC 856, a bulgeless dwarf galaxy with embedded faint spiral arms, we construct 11 sets of initial conditions with slight dynamical variations based on observational data. Our standard model starts slowly to form a bar at ~3 Gyr and then undergoes buckling instability that temporarily weakens the bar although the bar strength continues to grow afterward. We find 9 of our models are unstable to bar formation and undergo buckling instability. This suggests that disky dwarf elliptical galaxies are intrinsically unstable to form bars, accounting for a population of barred dwarf galaxies in the outskirts of the Virgo cluster. To understand the origin of the faint grand-design spiral arms, we additionally construct 6 sets of models that undergo tidal interactions with their neighbors. We find that faint spiral arms consistent with observations develop when tidal forcing is relatively weak although strong encounter still results in bar formation. We discuss our results in light of the dynamical evolution of dwarf elliptical galaxies including mergers.

  • PDF

KROSS: Probing the Tully-Fisher Relation over Cosmic Time

  • Bureau, Martin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.35.2-35.2
    • /
    • 2018
  • Using the K-band Multi-object Spectrograph (KMOS) at the Very Large Telescope (VLT), the KMOS Redshift One Spectroscopic Survey (KROSS) has gathered integral-field data for ~800 star-forming galaxies at a redshift z~1, when the universe was roughly half its current age and forming the bulk of its stars. With spatially-resolved observations, KROSS reveals galaxies that are both gas-rich and highly turbulent. It is possible to derive the observed and baryonic Tully-Fisher (luminosity - rotation velocity) relations, thus constraining the mass-to-light ratios and total (luminous + dark) masses of the galaxies. This in turn highlights the dependence of the relation zero-point on the degree of rotational support of the galaxies (rotational velocity to velocity dispersion ratio). By degrading and analogously analysing integral-field data of hundreds of local galaxies from the Sydney-AAO Multi-object Integral-field Spectrograph (SAMI) survey, a robust comparison z=0 Tully-Fisher relation can also be derived, thus further constraining the luminous and dark mass growth of disk galaxies over the last 7 billions years. This unique comparison also reveals that systematic effects associated with sample selection and analysis methods are as large as the effects expected from cosmological evolution, and thus that most other comparisons employing heterogeneous data and/or methods can safely be ignored.

  • PDF

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF