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ABSTRACT

To investigate the SEDs of galaxies considering the dust extinction processes in the
galactic disks, we present the population synthesis models for normal galaxies with
dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997) to model them with
standard input parameters for stars and new dust parameters. We find that the model
results are strongly dependent on the dust parameters as well as other parameters (e.g.
star formation history). We compare the model results with the observations and dis-
cuss about the possible explanations. We find that the dust opacity functions derived
from studies of asymptotic giant branch stars are useful for modeling a galaxy with a
dusty disk.
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1. INTRODUCTION

The spectral energy distribution (SED) of a galaxy reveals the extinction and re-emission pro-
cesses in the interstellar medium as well as the radiation from many types of stars. A theoretical
population synthesis model is sensitively influenced by the property of the radiative processes and
completeness of the spectral library of stars. The spectrophotometric synthesis is the only method
that can do a population synthesis. The population synthesis model calculation combines several
factors as the initial mass function (IMF), star formation rate (SFR), libraries of evolutionary tracks
and model atmospheres which give an effect to the evolution of galaxies.

In this paper, we investigate the SEDs of galaxies considering the extinction processes in the
dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997) to model the galaxies with dusty
disks with standard input parameters for stars and new dust parameters.

2. DUST GRAINS IN GALAXIES

We use silicate and graphite dust grains for extinction in the dusty disk of galaxies. For silicate,
we use the optical constants of cool silicates derived by Suh (1999) and the ones from Draine &
Lee (1984) for comparison. For graphite, we use the optical constants from Draine & Lee (1984).
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Figure 1. The opacity functions of dust grains.

We calculate the opacity functions assuming that the MRN (Mathis, Rumpl, & Nordsieck 1977) size
distribution of the spherical dust grains. Fig. 1 shows the opacity functions. The ratio of silicate and
graphite depends on the metallicity. Adopting the mixture obtained by Pei (1992) for our Galaxy,
we use 57.73 % of silicate dust grains and 42.27 % of graphite dust grains by number for this paper.

3. THE POPULATION SYNTHESIS MODEL PARAMETERS
AND THE MODEL SED RESULTS

We perform the evolutionary population synthesis model calculations using the following as-
sumptions and parameters. For stellar tracks libraries, we use the ones from Lejeune, Cuisinier &
Buser (1997, 1998). We use a fixed metallicity (Z=0.02). We assume that 70 % of the Lyman con-
tinuum photons are absorbed by the gas. The initial metallicity of the interstellar medium is zero.
We prefer to start from a galaxy already constituted. The fraction of the star formation rate used
to form substellar objects is zero. We assume that model there are no galactic winds that preventes
star formation. The fraction of close binary systems used to compute ejecta of SNIa is 0.05. For
the type of supernovae type II ejecta, we apply model B of Woosley & Weaver (1995). See Fioc &
Rocca-Volmerange (1997) for details about the parameters.

A fundamental quantity for studying galaxy evolution is the IMF that specifies the distribution
in mass of newly formed stars. We use the IMF from Rana & Basu (1992) as displayed in Fig. 2.
The £(log m) is the IMF in units of stars/pc?/(log m).

Another crucial parameter is the the star formation rate (SFR) history. We use the SFR functions
assuming that the galactic mass is 10'! M. For this paper, we use the two types of SFR scenario
functions as discussed in Barbaro & Poggianti (1997) (Fig. 3, 4).
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Figure 2. Initial mass function from Rana & Basu (1992).

The first type of the SFR history function is the exponentially decreasing one (Fig. 3).

exp(—t/pl)

SFR =p2
pl

¢y
Equation 1 is the SFR function used by PEGASE and the unit of p1 is Myr, and unit of p2 is M.

P(t) = thoB exp(-pt) )

Equation 2 is the SFR function used by Barbaro & Poggianti (1997; see Fig. 3). The 8 parameter
is related to the time scale of the star formation, ¥ depends on the galaxy mass. The parameters
of these equations are related with 5 = 1/pl and 1, = p2. Table 1 lists the data from Barbaro &
Poggianti (1997) which have been used for this paper (Fig. 3). The values of v are the averaged
ones from the data listed in the paper.

The second type of the SFR history function is in an asymmetric Gaussian form as displayed in
Fig. 4. The SFR functions in the Fig. 4 use the data from Barbaro & Poggianti (1997). The values
of the SFR in Fig. 4 are 5 x 10712 times the values in the Table 8 in Barbaro & Poggianti (1997)
who derived the data only for spiral galaxies.

In Fig. 5 and Fig. 6, we present the model SED diagrams for a typical Sb type galaxy at various
ages. The model results with the type I SFR function (Fig. 3) are displayed in Fig. 5 and the results
with the type II SFR function (Fig. 4) are displayed in Fig. 6. The first panels of Fig. 5 and Fig.
6 display the results without any dust extinction, the second panels use silicate dust grains of Suh
(1999), and the third ones use silicate dust grains of Draine & Lee (1984). We assume that the
extinction by the dust grains in the galactic disk is due to the averaged viewing inclination angle.
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Figure 4. The type II SFR functions.
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Table 1. Parameters for the exponentially decreasing (type I) SFR functions (see Fig. 3).

galaxy type B(Gyr~1) Yo (Mp)
E 1.000 0.042
) 0.430 0.028
Sa 0.280 0.076
Sb 0.100 0.048
Sc 0.055 0.059

The SEDs in Fig. 5 and Fig. 6 show that the effect of the dust extinction is most significant at
UV wavelengths and the effect is very minor at infrared wavelengths. Actually, the effect of dust is
very large at infrared bands because of the emission from the dust grains (e.g. Panuzzo et al. 2003).
The consideration of the emission from the dust grains is out of scope of this work.

4. 2-COLOR DIAGRAMS OF GALAXIES

We present the 2-color diagrams that compares the time evolution of the model results with the
observations. The input parameters for the 2-color diagrams (Fig. 7 and Fig. 8) are identical to those
for SED diagrams (see section 3; Fig. 5 and Fig. 6). The model results with the type I SFR functions
(Fig. 3) are displayed in Fig. 7 and the results with type II SFR functions (Fig. 4) are displayed
in Fig. 8. The first panels of Fig. 7 and Fig. 8 display the results without any dust extinction,
the second panels use silicate dust grains of Suh (1999), and the third ones use silicate dust grains
derived by Draine & Lee (1984).

We compare the positions of the model results at the age 13-14 Gyr (12 Gyr for Sc type in Fig.
7) with the observation ins Fig. 7 and Fig. 8 . The observation data were obtained by Aaronson
(1978) for typical galaxies. We find that dust extinction is required to make a proper comparison
with the observations,

For spiral galaxies, we find that the models with type II SFR functions and dust extinction
produce the better fit with the observations. In this study, the silicate dust opacity functions from
Suh (1999) which were derived for asymptotic giant branch stars fit the observations even better
than the ones from Draine & Lee (1984) which were derived for interstellar dust. Comparing the
two panels in Fig. 8, we find that the second panel shows the model results which fit the observations
of Sb, Sc, and Sd type galaxies very well. This is due to different slopes of the opacity functions
obtained by different schemes (see Fig. 1).

5. CONCLUSIONS

To investigate the population synthesis models for normal galaxies with dusty disks, we have
used standard input parameters for stars and new dust parameters for the galactic disks. We find that
the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star
formation history). Comparing the model results with the observations, we find that dust extinction
is required to explain the observations properly. We find that the dust opacity functions derived from
studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.



180 SUH & KIM

T — T - -

i Sb galaxy

108 E

107 <
2 E
Zz F 3
s F y
E‘“’ E
«“

S/

PErwaenT

a
(]
T T T

10% e
§ No dust extinction
102 1 " A A " T
0.1 1 10
wavelength (m
- v - —r v v
Sh galaxy

3
—
.1'

AEREALL ]

=)
E]

3

T™rrrITT

Flog/s/AM,)

a
¥

YT

103

Dust: Silicate (57.73%; Suh 1999) e
+ Graphite (42.27%; Draine & Lee 1984) \
102 At b e A A A 2 A, P | n n -y r " i )

04

TYrrvy

wavelengih' (4

—T v —r T T v

, Sb galaxy
Mﬁ#ﬁ}_\ﬁ\

a r " —
RN o

i ey

Ty

=
(=]
o

<
<

o

TrrTTINT

E

F (erg/s/ AM)

0=

TrTTITT

102

Dust: Siticate (5§7.73%; Draine & Lee 1984)
+ Graphite (42.27%; Draine & Lee 1984)

TTrrT™

qom a1 N PP |

0.1 1
wavelength ()

Figure 5. The model SEDs for the Sb galaxy with the type I SFR function (Fig. 3).
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Figure 6. The model SEDs for the Sb galaxy with the type II SFR function (Fig. 4).
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Figure 7. 2-color diagrams of various galaxy types with the type I SFR functions (Fig. 3). The
circle symbols represent the observational data from Aaronson (1978).
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Figure 8. 2-color diagrams of various spiral galaxy types with type II SFR functions (Fig. 4). The
circle symbols represent the observational data from Aaronson (1978).
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