• Title/Summary/Keyword: galaxies: haloes

Search Result 16, Processing Time 0.034 seconds

Cosmological evolution of orientations of cluster-sized dark matter haloes and their central galaxies in the Horizon-AGN simulation

  • Taizo Okabe;Takahiro Nishimichi;Masamune Oguri;Sebastien Peirani;Tetsu Kitayama;Shin Sasaki;Yasushi Suto;Christophe Pichon;Yohan Dubois
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.491 no.2
    • /
    • pp.2268-2279
    • /
    • 2020
  • It is known observationally that the major axes of galaxy clusters and their brightest cluster galaxies are roughly aligned with each other. To understand the origin of the alignment, we identify 40 cluster-sized dark matter (DM) haloes with masses higher than 5 × 1013 M and their central galaxies (CGs) at z ≈ 0 in the Horizon-AGN cosmological hydrodynamical simulation. We trace the progenitors at 50 different epochs between 0 < z < 5. We then fit their shapes and orientations with a triaxial ellipsoid model. While the orientations of both DM haloes and CGs change significantly due to repeated mergers and mass accretions, their relative orientations are well aligned at each epoch even at high redshifts, z > 1. The alignment becomes tighter with cosmic time; the major axes of the CGs and their host DM haloes at present are aligned on average within ~30° in the 3D space and ~20° in the projected plane. The orientations of the major axes of DM haloes on average follow one of the eigenvectors of the surrounding tidal field that corresponds to the slowest collapsing (or even stretching) mode, and the alignment with the tidal field also becomes tighter. This implies that the orientations of CGs and DM haloes at the present epoch are largely imprinted in the primordial density field of the universe, whereas strong dynamical interactions such as mergers are important to explain their mutual alignment at each epoch.

Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization

  • Kimm, Taysun;Katz, Harley;Haehnelt, Martin;Rosdahl, Joakim;Devriendt, Julien;Slyz, Adrianne
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2018
  • Reionisation in the early Universe is likely driven by dwarf galaxies. Using cosmological RHD simulations, we study star formation and the escape of Lyman continuum (LyC) photons from mini-haloes with Mhalo<108Msun. We find that feedback reduces star formation very efficiently in mini-haloes, resulting in the stellar mass consistent with the empirical stellar mass-to-halo mass relation derived in the local Universe. Because star formation is stochastic and dominated by a few gas clumps, the escape fraction in mini-haloes is generally determined by photo-ionization, rather than supernova explosions. We find that the photon number-weighted mean escape fraction in mini-haloes is higher (20-40%) than that in atomic-cooling haloes. Despite their high escape fractions, LyC photons from mini-haloes are of minor importance for reionization due to inefficient star formation. We confirm previous claims that stars in atomic-cooling haloes with masses $10^8M_{sun}$$10^{11}M_{sun}$ are likely to be the most important source of reionization.

  • PDF

Statistics of two-point correlation and network topology for Ly α emitters at z ≈ 2.67

  • Sungryong Hong;Arjun Dey;Kyoung-Soo Lee;Alvaro A Orsi;Karl Gebhardt;Mark Vogelsberger;Lars Hernquist;Rui Xue;Intae Jung;Steven L Finklestein;Sarah Tuttle;Michael Boylan-Kolchin
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.483 no.3
    • /
    • pp.3950-3970
    • /
    • 2019
  • We investigate the spatial distribution of Ly α-emitting galaxies (LAEs) at z ≈ 2.67, selected from the NOAO Deep Wide-Field Survey, using two-point statistics and topological diagnostics adopted from network science. We measure the clustering length, r0 ≈ 4 h-1 Mpc, and the bias, bLAE = 2.2+0.2-0.1. Fitting the clustering with halo occupation distribution (HOD) models results in two disparate possibilities: (1) where the fraction of central galaxies is <1 per cent in haloes of mass >1012 M and (2) where the fraction is ≈20 per cent. We refer to these two scenarios as the 'Dusty Core Scenario' for Model#1, since most of the central galaxies in massive haloes are dead in Ly α emission, and the 'Pristine Core Scenario' for Model#2, since the central galaxies are bright in Ly α emission. Traditional two-point statistics cannot distinguish between these disparate models given the current data sets. To overcome this degeneracy, we generate mock catalogues for each HOD model using a high-resolution N-body simulation and adopt a network statistics approach, which provides excellent topological diagnostics for galaxy point distributions. We find three topological anomalies from the spatial distribution of observed LAEs, which are not reproduced by the HOD mocks. We find that Model#2 matches better all network statistics than Model#1, suggesting that the central galaxies in >1012 h-1 M haloes at z ≈ 2.67 need to be less dusty to be bright as LAEs, potentially implying some replenishing channels of pristine gas such as the cold mode accretion.

When do cosmic peaks, filaments, or walls merge? A theory of critical events in a multiscale landscape

  • C Cadiou;C Pichon;S Codis;M Musso;D Pogosyan;Y Dubois;J-F Cardoso;S Prunet
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.496 no.4
    • /
    • pp.4787-4821
    • /
    • 2020
  • The merging rate of cosmic structures is computed, relying on the ansatz that they can be predicted in the initial linear density field from the coalescence of critical points with increasing smoothing scale, used here as a proxy for cosmic time. Beyond the mergers of peaks with saddle points (a proxy for halo mergers), we consider the coalescence and nucleation of all sets of critical points, including wall-saddle to filament-saddle and wall-saddle to minima (a proxy for filament and void mergers, respectively), as they impact the geometry of galactic infall, and in particular filament disconnection. Analytical predictions of the one-point statistics are validated against multiscale measurements in 2D and 3D realizations of Gaussian random fields (the corresponding code being available upon request) and compared qualitatively to cosmological N-body simulations at early times (z ≥ 10) and large scales (≥5 Mpc h-1). The rate of filament coalescence is compared to the merger rate of haloes and the two-point clustering of these events is computed, along with their cross-correlations with critical points. These correlations are qualitatively consistent with the preservation of the connectivity of dark matter haloes, and the impact of the large-scale structures on assembly bias. The destruction rate of haloes and voids as a function of mass and redshift is quantified down to z = 0 for a Lambda cold dark matter cosmology. The one-point statistics in higher dimensions are also presented, together with consistency relations between critical point and critical event counts.

On dark matter haloes of barred disc galaxies

  • Sodi, Bernardo Cervantes;Li, Cheng;Park, Changbom;Wang, Lixin;Lin, Ye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2014
  • We present an extensive study of the environment of galaxies with bars in the low-redshift Uni-verse, using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey, with visually-determined morphological classifications and bar identifications. We use four different statistics to quantify the environment of our galaxies: the projected two-point cross-correlation function with respect to a spectroscopic sample of reference galaxies, the background-subtracted number count of galaxies in a deep photometric sample in the vicinity of our galaxies, the overdensity of the local environment estimated at ~3 Mpc scale from the three-dimensional reconstruction of the cosmic density field of the local Universe, and the membership of our galaxies in the SDSS galaxy groups to segregate central to satellite systems. We find a weak, but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc, when compared to early-type galaxies without a bar. For late-type galaxies, we find less neighbours within ~50 kpc around the barred late-types when compared to the unbarred late-types. For late-type galaxies we also detect a decrease of the bar fraction for dark matter dominated systems, and finally we find no obvious correlation between the overdensity and the fraction of barred galaxies in our sample.

  • PDF

The significance of galaxy mergers in stellar mass growth as a function of galaxy and halo mass

  • Lee, Jaehyun;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.46.3-46.3
    • /
    • 2015
  • As theoretical and empirical studies have pointed out, galaxy mergers play a pivotal role in galaxy mass assembly histories. Its contribution is considered to be more significant in more massive galaxies. In order to quantitatively understand the origin of stellar components in galaxies, we investigated stellar mass assembly histories as a function of galaxy and halo mass using semi-analytic approaches. In this study, we found that the most massive galaxies (log $M/M_{\odot}$ ~ 11.75 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via mergers. The role of mergers monotonically declines with galaxy mass: less than 20% for log $M/M_{\odot}$ = 10.75 at z = 0. The contribution of galaxy mergers to stellar mass growth decays more slowly than that of in-situ star formation. Therefore, merger accretion becomes a dominant channel for stellar mass growth of the most massive group since z~2. However, when it comes to central galaxies in haloes less massive than $10^{13}_{\odot}$, star formation is always dominant.

  • PDF

SUSSING MERGER TREES: THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODEL

  • LEE, JAEHYUN;YI, SUKYOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.473-474
    • /
    • 2015
  • Halo merger trees are the essential backbone of semi-analytic models for galaxy formation and evolution. Srisawat et al. (2013) show that different tree building algorithms can build different halo merger histories from a numerical simulation for structure formation. In order to understand the differences induced by various tree building algorithms, we investigate the impact of halo merger trees on a semi-analytic model. We find that galaxy properties in our models show differences between trees when using a common parameter set. The models independently calibrated for each tree can reduce the discrepancies between global galaxy properties at z=0. Conversely, with regard to the evolutionary features of galaxies, the calibration slightly increases the differences between trees. Therefore, halo merger trees extracted from a common numerical simulation using different, but reliable, algorithms can result in different galaxy properties in the semi-analytic model. Considering the uncertainties in baryonic physics governing galaxy formation and evolution, however, these differences may not necessarily be significant.

Searching for MgII absorbers in and around galaxy clusters

  • Lee, Jong Chul;Hwang, Ho Seong;Song, Hyunmi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2021
  • To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars and cluster galaxies from the SDSS. With 82,000 quasar spectra, we detect 197 MgII absorbers in and around the clusters. The detection rate per quasar is 2.70 times higher inside the clusters than outside the clusters, indicating that MgII absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that MgII absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.

  • PDF

Clustering properties and halo occupation of Lyman-break galaxies at z ~ 4

  • Park, Jaehong;Kim, Han-Seek;Wyithe, Stuart B.;Lacey, Cedric G.;Baugh, Carlton M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.3-60
    • /
    • 2015
  • We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ~ 4. Using the hierarchical galaxy formation model GALFORM, we predict the angular correlation function (ACF) of LBGs and compare this with the measured ACF from combined survey fields consisting of the Hubble eXtreme Deep Field (XDF) and CANDELS. We find that the predicted ACF is in a good agreement with the measured ACFs. However, when we divide the model LBGs into bright and faint subset, the predicted ACFs are less consistent with observations. We quantify the dependence of clustering on luminosity and show that the fraction of satellite LBGs is important for determining the amplitude of ACF at small scales. We find that central LBGs predominantly reside in ${\sim}10^{11}h^{-1}M_{solar}$ haloes and satellites reside in haloes of mass ${\sim}10^{12}-10^{13}h^{-1}M_{solar}$. The model predicts fewer bright satellite LBGs than is inferred from the observation. LBGs in the tails of the redshift distribution contribute significant additional clustering signal, especially on small scales. This spurious clustering may affect the interpretation of the halo occupation distribution, including the minimum halo mass and abundance of satellite LBGs.

  • PDF

ORIGIN AND EVOLUTION OF STRUCTURE FOR GALAXIES IN THE LOCAL GROUP

  • LAN, NGUYEN QUYNH;MATHEWS, GRANT J.;VINH, NGUYEN ANH;LAM, DOAN DUC
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.521-523
    • /
    • 2015
  • The Milky Way did not form in isolation, but is the product of a complex evolution of generations of mergers, collapses, star formation, supernovae and collisional heating, radiative and collisional cooling, and ejected nucleosynthesis. Moreover, all of this occurs in the context of the cosmic expansion, the formation of cosmic filaments, dark-matter haloes, spiral density waves, and emerging dark energy. This paper summarizes a review of recent attempts to reconstruct this complex evolution. We compare simulated properties with various observed properties of the Local Group. Among the generic features of simulated systems is the tendency for galactic halos to form within the dark matter filaments that define a supergalactic plane. Gravitational interaction along this structure leads to a streaming flow toward the two dominant galaxies in the cluster. We analyze this alignment and streaming flow and compare with the observed properties of Local-Group galaxies. Our comparison with Local Group properties suggests that some dwarf galaxies in the Local Group are part of a local streaming flow. These simulations also suggest that a significant fraction of the Galactic halo formed at large distances and arrived later along these streaming flows.