DOI QR코드

DOI QR Code

ORIGIN AND EVOLUTION OF STRUCTURE FOR GALAXIES IN THE LOCAL GROUP

  • LAN, NGUYEN QUYNH (Hanoi National University of Education) ;
  • MATHEWS, GRANT J. (Center for Astrophysics, Department of Physics, University of Notre Dame) ;
  • VINH, NGUYEN ANH (Hanoi National University of Education) ;
  • LAM, DOAN DUC (Hanoi National University of Education)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

The Milky Way did not form in isolation, but is the product of a complex evolution of generations of mergers, collapses, star formation, supernovae and collisional heating, radiative and collisional cooling, and ejected nucleosynthesis. Moreover, all of this occurs in the context of the cosmic expansion, the formation of cosmic filaments, dark-matter haloes, spiral density waves, and emerging dark energy. This paper summarizes a review of recent attempts to reconstruct this complex evolution. We compare simulated properties with various observed properties of the Local Group. Among the generic features of simulated systems is the tendency for galactic halos to form within the dark matter filaments that define a supergalactic plane. Gravitational interaction along this structure leads to a streaming flow toward the two dominant galaxies in the cluster. We analyze this alignment and streaming flow and compare with the observed properties of Local-Group galaxies. Our comparison with Local Group properties suggests that some dwarf galaxies in the Local Group are part of a local streaming flow. These simulations also suggest that a significant fraction of the Galactic halo formed at large distances and arrived later along these streaming flows.

Keywords

References

  1. Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R., & Ostriker, J. P., 1995, A Piecewise Parabolic Method for Cosmological Hydrodynamics, CoPhC, 89, 149
  2. Bryan, G. L., et al., 2014, The Enzo Collaboration, ApJS, 211, 19 https://doi.org/10.1088/0067-0049/211/2/19
  3. Busha, M. T., Wechsler, R. H., Behroozi, P. S., Gerke, B. F., Klypin, A. A., & Primack, J. R., 2011, Statistics of Satellite Galaxies around Milky-Way-like Hosts, ApJ, 743, 117 https://doi.org/10.1088/0004-637X/743/2/117
  4. Eggen, O. J., Lynden-Bell, L. D., & Sandage, A. R., 1962, Evidence from the Motions of Old Stars that the Galaxy Collapsed, ApJ, 136, 748 https://doi.org/10.1086/147433
  5. Gomez, F. A., et al., 2012, Characterizing the Formation History of Milky Way like Stellar Halos with Model Emulators, ApJ, 760, 112 https://doi.org/10.1088/0004-637X/760/2/112
  6. Hinshaw, G., et al., 2013, Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, ApJS, 208, 19 https://doi.org/10.1088/0067-0049/208/2/19
  7. Kim, J. -H., et al., 2014, The AGORA High-resolution Galaxy Simulations Comparison Project, ApJS, 210, 14 https://doi.org/10.1088/0067-0049/210/1/14
  8. Kravtsov, A. V., Klypin, A. A., & Khokhlov, A. M., 1997, Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations, ApJS, 111, 73 https://doi.org/10.1086/313015
  9. Mathews, G. J., Snedden, A., & Phillips, L. A., et al., 2014, Origin and Evolution of Structure and Nucleosynthesis for Galaxies in the Local Group, MPLA, 29, 1430012 https://doi.org/10.1142/S0217732314300122
  10. Mathews, G. J., Zhao, X., & Lan, N. Q., 2012, Origin and Evolution of Structure and Nucleosynthesis for Galaxies in the Local Group, ASPC, 458, 261M
  11. Planck Coll. XVI.Collaboration, 2013, Planck 2013 results. XVI. Cosmological Parameters, A&A, 571, 16
  12. Searle, L. & Zinn, R., 1978, Compositions of Halo Clusters and the Formation of the Galactic Halo, ApJ, 225, 357 https://doi.org/10.1086/156499
  13. Spannapieco, C., et al., 2012, The Aquila Comparison Project: the Effects of Feedback and Numerical Methods on Simulations of Galaxy Formation, MNRAS, 423, 1726 https://doi.org/10.1111/j.1365-2966.2012.20993.x
  14. Springel, V., et al., 2001, GADGET: a code for collisionless and gasdynamical cosmological simulations, NewA, 6, 79 https://doi.org/10.1016/S1384-1076(01)00042-2
  15. Springel, V., et al., 2005a, The Cosmological Simulation Code GADGET-2, MNRAS, 364, 1105 https://doi.org/10.1111/j.1365-2966.2005.09655.x
  16. Springel, V., et al., 2005b, Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars, Nature, 435, 629 https://doi.org/10.1038/nature03597
  17. Springel, V., et al., 2008, The Aquarius Project: the Sub-haloes of Galactic Haloes, MNRAS, 391, 1685 https://doi.org/10.1111/j.1365-2966.2008.14066.x
  18. Stinson, G., et al., 2006, Star Formation and Feedback in Smoothed Particle Hydrodynamic Simulations - I. Isolated Galaxies, MNRAS, 373, 1074 https://doi.org/10.1111/j.1365-2966.2006.11097.x
  19. Teyssier, R., 2002, Cosmological Hydrodynamics with Adaptive Mesh Refinement. A New High Resolution Code Called RAMSES, A&A, 385, 337 https://doi.org/10.1051/0004-6361:20011817
  20. Wadsley, J. W., Stadel, J., & Quinn, T., 2004, Gasoline: a Flexible, Parallel Implementation of TreeSPH, NewA, 9, 137 https://doi.org/10.1016/j.newast.2003.08.004
  21. Wang, J., Frenk, C., Navarro, J. F., Gao, L., & Sawala, T., 2012, The Missing Massive Satellites of the Milky Way, MNRAS, 424, 2715 https://doi.org/10.1111/j.1365-2966.2012.21357.x
  22. White, S. D. M. & Rees, M. J., 1978, Core Condensation in Heavy Halos - A Two-stage Theory for Galaxy Formation and Clustering, MNRAS, 183, 341 https://doi.org/10.1093/mnras/183.3.341
  23. Zhao, X., 2011, Cosmic Expansion in Inhomogeneous Cosmologies and the Formation of Local-group Like Systems, PhD thesis, Univ. Notre Dame
  24. Zhao, X. & Mathews, G. J., 2011, Effects of Structure Formation on the Expansion Rate of the Universe: An Estimate from Numerical Simulations, PhRvD, 83, 3524