• Title/Summary/Keyword: gait speed

Search Result 451, Processing Time 0.027 seconds

A Preliminary Study of the Effect of 4 Week Backward Walking Exercise on Cervical Angle and Gait Parameters in College Students with Moderate Forward Head Posture (중등도 앞쪽 머리 자세 대학생을 대상으로 4주간 뒤로 걷기 운동이 목뼈 각도와 걸음 변수에 미치는 예비 연구)

  • Park, Han-Kyu;Kim, Gun-Ho;Lee, Min-Hyeok;Hwang, Su-Yeon;Park, Mi-Dam;Kim, Beom-Su;Kim, Mi-Ju
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • Purpose : The purpose of this study was to investigate the effect of backward walking exercise on changes in the cervical angle and gait parameters in subjects with moderate forward head posture. Methods : Four subjects were selected for this study. In particular, subjects with an average of 43 subjects with moderate craniovertebral angles were selected as the criteria for subject selection. The exercise program consisted of a 5 minutes warm-up exercise, 20 minutes main exercise, and 5 minutes cool-down exercise. In the main exercise, the treadmill speed was 2.5 km/h for men, 2.0 km/h for women in the first week, from the 2nd week to the 4th week, it was increased by 0.5 km/h every week. Results : Craniovertebral angle increased by 2.06±2.46 ° before and after the backward walking exercise, and craniorotational angle decreased by -1.69±3.33 ° before and after exercise. As for the gait parameters, in the amount of change before and after the backward walking exercise, the left foot pressure was 4.58±5.70 % from front to back and the right foot pressure was 5.08±3.06 % from front to back. The left step length and right step length showed a change of -.33±4.43 cm and -2.08±7.26 cm, respectively. stride length showed a change of -2.59±11.18 cm. The left and right stance phase showed a change of -1.02±2.03 % and -1.23±1.54 %, respectively. The left and right swing phase showed changes of 1.02±2.03 % and 1.22±1.53 %, respectively. The left and right step times were -.01±.06 sec and -.02±.12 sec, respectively. The stride time showed a change of -.03±.18 sec. Conclusion : Changes in cervical angle and gait parameters were confirmed by performing backward walking exercise for subjects with moderate forward head posture for 4 weeks. Therefore, additional research should be conducted based on this case study.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

Effect of Deep Lumbar Muscle Stabilization Exercise on the Spatiotemporal Walking Ability of Stroke Patients

  • Ahn, Jongchan;Choi, Wonho
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.4
    • /
    • pp.1873-1878
    • /
    • 2019
  • Background: Walking is a complex activity. The main components of walking include balance, coordination, and symmetrical posture. The characteristics of walking patterns of stroke patients include slow walking, measured by gait cycle and walking speed. This is an important factor that reflects post-stroke quality of life and walking ability. Objective: This study aimed to examine the effect of deep lumbar muscle stabilization exercise on the spatiotemporal walking ability of stroke patients. Design: Quasi-experial study Methods: The experiment was conducted 5 times per week for 4 weeks, with 30 minutes per session, on 10 subjects in the experimental group who performed the deep lumbar muscle stabilization exercise and 10 subjects in the control group who performed a regular exercise. Variables that represent the spatiotemporal walking ability (step length, stride length, step rate, and walking speed) were measured using GAITRrite before and after the experiment and were analyzed. Results: There was a significant difference in the pre- and post-exercise spatiotemporal walking ability between the two groups (p<.05). Furthermore, there was a significant difference in the step rate and walking speed between the two groups (p<.05). Conclusions: Deep lumbar muscle stabilization exercise is effective in improving the walking ability of stroke patients. Therefore, its application will help improve the spatiotemporal walking ability of stroke patients.

Comparison of Kinematic Factors between Old and Young People during Walking on Level and Uneven Inclined Surfaces (평지와 고르지 않은 지면 경사로 보행 시 고령자와 젊은 성인의 운동학적 요인 비교)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The purpose of this study was to investigate the changes in walking pattern of the elderly during inclined walkway with uneven surfaces and level walking. 10 young($26.3{\pm}1.3$ years, $174.3{\pm}5.3\;cm$, $69.5{\pm}9.5\;kg$) and 13 elderly($72.4{\pm}5.2$ years, $164.5{\pm}5.4\;cm$, $66.1{\pm}9.6\;kg$) male subjects were participated in the experiment. Experiment consisted of 2 walking conditions: horizontal and inclined walkway with uneven surfaces. 3D motion capturing system were used to acquire and analyze walking motion data with sampling frequency of 120 Hz. To compare differences between conditions, kinematic variables(walking speed, stance-swing ratio, hip joint angle, knee joint angle, ankle joint angle, pelvic rotation angle) were used. Results showed that there were some changes of elderly walking pattern in inclined walkway with uneven surfaces: hip joint(adduction and rotation) and pelvic movement pattern. These changes by inclination and surface may affect gait pattern of young subjects as well as elderly subjects. However, in case of elderly it revealed more unstable gait than the young. Further study is necessary to clarify changes in walking pattern for elderly by considering various gait variables including head movement and various walkway conditions.

Pregnant Women's Gait of Stair Decent with Different Treads (임신기간 중 계단의 단너비에 따른 임산부 보행)

  • Hah, Chong-Ku;Ki, Jae-Sug;Jang, Young-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • The purpose of this study is to suggest a proper tread of stairs using kinematic factors and moments of the lower-limb joints in the stair decent with the 3 different treads with boimechanical method in ergonomics. 9 subjects (body masses; $59.41{\pm}7.49$, $64.03{\pm}6.65$, $67.26:{\pm}7.58$, heights; $160.50{\pm}6.35$ ages; $31.22{\pm}2.99$; parity; $1.67{\pm}0.71$) participated in three experiments that were divided by physiological symptoms (the early (0-15 weeks), middle (16-27 weeks) and last (18-39 weeks). and they walked at self-selected pace on 4 staircases 3 trials. As extending the pregnancy period, cadence was shorter but cycle time were longer more and more. As extending treads of stair decent during pregnancy, speed, stride lengths and cycle time were increased. As extending the treads of stair decent, hip and ankle moments increased but knee moments decreased in sagittal plane. There were increasing or decreasing of moments by means of treads. These changes may account for relation between the treads of stair and moments in pregnant women. The main changes of pregnant women were joint moments and kinematic factors during pregnancy period because pregnancy makes them physical changes. It is possible that joints have connection with compensation each other to maximize stability and to control gait motion. In conclusion, we suggest that the tread of stair is longer than 26cm tread. and exercise programs to improve muscle activity were necessary where joint moments were small.

A Study on Gait Analysis of Normal Adult and Hemiplegia Patients (정상 성인과 편마비 환자의 보행분석 연구)

  • An, Chang-Sik;Jung, Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.3
    • /
    • pp.129-135
    • /
    • 2002
  • The aim of this study is to present the basic reference data of age and specipic gait parameters for Hemiplegia Patients. The basic gait parameters were extracted from 30 Adult Hemiplegia Patients and 30 normal adult, 50 to 60 years of age using VICON 512 Motion Analyzer. The results were as follows; 1) The mean Cadence of the adult to the hemiplegia were $108.50\pm11.67$ steps/min, to $77.57\pm22.71$ steps/min. 2) The mean Walking Speed of the adult to the hemiplegia were $1.07\pm0.18m/s$, to $0.44\pm0.14m/s.$. 3) The mean Stride Length of the adult to the hemiplegia were $1.17\pm0.12m$, to $0.69\pm0.21m.$ 4) The mean maximal angles of joint on the pelvic tilt for different adult or hemiplegia Were $7.60\pm3.91.,\;to\;9.63\pm4.94.\;(P<0.05)$ 5) The mean maximal angles of joint on the hip flexion motion for different adult or hemiplegia were $29.53\pm5.03.,\;to\;25.30\pm9.94.\;(p<0.05)$ 6) The mean maximal angles of joint on the knee flexion motion for different adult or hemiplegia were $56.36\pm5.81.,\;to\; 41.64\pm17.21.(P<0.05)$ 7) The mean maximal angles of joint on the ankle dorsiflexion motion for different adult or hemiplegia were $16.65\pm2.72.,\;to\;16.53\pm7.45$(P>0.05) 8) The mean maximal angles of joint on the ankle plantarflexion motion for different adult or hemiplegia were $7.11\pm5.42.,\;to\;2.81\pm6.14.$(p<0.05)

  • PDF

Effects of the Functional Garment Wear on Cobb's Angle and COM of Trunk and Pelvic during Gait for Adolescent Idiopathic Scoliosis Patients (청소년 특발성 척추 측만증 환자를 위한 보정웨어가 측만각도와 보행 시 몸통과 골반의 중심이동에 미치는 영향)

  • Park, Yang-Sun;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.269-275
    • /
    • 2014
  • The purpose of this study is to develop functional garment wear for patients with adolescent idiopathic scoliosis (AIS) and to analyze changes in Cobb's angle and the COM of the body and the pelvis during gaits in order to identify the effects of the functional garment wear. The subjects of the study were 9 patients with adolescent idiopathic scoliosis, who wore the functional garment wear for 12 weeks 12 hours a day. As for the research methods, the scoliotic angle was measured using Cobb's angle, and the shoulder angle and the COM of the body and the pelvis during gaits for the AIS patients were calculated using five high speed infrared cameras. As a result of the study, it was found that the scoliotic angle (Cobb's angle) was reduced significantly and that the smaller the original scoliotic angle, the greater the effects. As for the shoulder motion angle, a significantly larger angle was found 12 weeks after wearing the functional garment wear, and particularly, larger shoulder motion (activity) was observed at the phase of right heel contact. As for the motion of the body and the pelvis, the moving ranges were significantly reduced after wearing the functional garment wear for 12 weeks, which stabilized gait in the patients with adolescent idiopathic scoliosis.

3-Dimensional Gait Analysis of Left or Right Hemiplegia Patients (좌.우측 편마비 환자의 3차원적 보행분석)

  • Jung, Seok;Kim, Hee-Wan
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.1
    • /
    • pp.129-134
    • /
    • 2002
  • The aim of this study is to present the basic reference data of age and specipic gait parameters for Hemiplegia Patients. The basic gait parameters were extracted from 10 Adult Hemiplegia Patients, 5 left Hemiplegia Patients and 5 right Hemiplegia Patients, 50 to 60 years of age using VICON 512 Motion Analyzer. The results were as follows; 1) The mean Cadence of the left to the right hemiplegia were $75.81{\pm}28.10\;steps/min$, to $68.47{\pm}9.93\;steps/min$. 2) The mean Walking Speed of the left to the right hemiplegia were $0.45{\pm}0.28\;m/s$, to $0.44{\pm}0.14\;m/s$. 3) The mean Stride Length of the left to the right hemiplegia were $0.66{\pm}0.31\;m$, to $0.76{\pm}0.17m$. 4) The mean. maximal angles of joint on the pelvic tilt for different right or left hemiplegia were $8.59{\pm}5.13^{\circ}$, to $11.85{\pm}5.23^{\circ}$.(p>0.05) 5) The mean maximal angles of joint on the hip flexion motion for different right or left hemiplegia were $23.98{\pm}8.45^{\circ}$, to $25.81{\pm}5.39^{\circ}$.(p>0.05) 6) The mean maximal angles of joint on the knee flexion motion for different right or left hemiplegia were $29.52{\pm}10.24^{\circ}$, to $28.38{\pm}14.48^{\circ}$.(p>0.05) 7) The mean maximal angles of joint on the ankle dorsiflexion motion for different right or left hemiplegia were $14.68{\pm}5.03^{\circ}$, to $9.90{\pm}7.26^{\circ}$.(p>0.05) 8) The mean maximal angles of joint on the ankle plantarflexion motion for different right or left hemiplegia were $2.10{\pm}5.17^{\circ}$, to $8.63{\pm}5.81^{\circ}$.(p>0.05)

  • PDF

The Effects of Virtual Reality Exercise Program with Wii-FitTM on Dynamic Balance and Walking Ability in Patients with Stroke (Wii-FitTM을 이용한 가상현실 운동프로그램이 뇌졸중 환자의 균형 및 보행능력에 미치는 영향)

  • Kim, Jung-Hee;Lee, Jong-Soo;Lee, Su-Hyun;Kim, Seong-Sik;Lee, Byoung-Hee
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.227-238
    • /
    • 2011
  • Objectives : This study was to investigate the effects on using Virtual reality exercise program($Wii-Fit^{TM}$) for dynamic balance and walking ability in patients with stroke. Methods : The 22 subjects were randomly selected from the patients of the S hospital who met the study conditions. They were divided into a $Wii-Fit^{TM}$ balance game group of 12 patients and a conventional physical therapy group of 10 patients. The $Wii-Fit^{TM}$ balance game group received $Wii-Fit^{TM}$ balance game group general physiotherapy for 5 days a weeks, 30 minutes a day, for a 4 weeks and the conventional physical therapy group received general physiotherapy for the same period. The subjects were measured and compared for Brunel balance assessment, functional gait assessment, 6 minute walk test, GAITRite system before and after the program. Results : The experimental group tend to improve more than control group in shifting the weight to the affected side(p=0.040) and tap test(p<0.001). The experimental group tend to improve more than control group in FGA(p=0.016). The experimental group improved significantly more than control group in 6MWT(p=0.008). The experimental group improved significantly more than control group in gait speed, cadence, stride length. Conclusions : Virtual Reality program($Wii-Fit^{TM}$) with conventional physical therapy shows the benefits on dynamic balance and gait parameters in patients with stroke.

The Interlimb Coordination During Movement Initiation From a Quiet Stance: Manipulation of Swing Limb Kinetics and Kinematics -A Preliminary Study

  • Kim, Hyeong-Dong;Yoon, Bum-Chull
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • The purpose of the current experiment was to describe interlimb coordination when swing limb conditions are being manipulated by constraining step length or by adding a 5 or 10 pound weight to the swing limb distally. Subjects were asked to begin walking with the right limb to land on the primary target (normal step length) that is 10 cm in diameter. However, if, during movement, the light was illuminated, then the subject had to step on one of the secondary targets (long and short step length). These three step length conditions were repeated while wearing a 5 pound ankle weight and then when wearing a 10 pound ankle weight. Ground reaction force (GRF) data indicated that there were changes in the forces and slopes of the swing and stance Fx GRFs. Long stepping subjects had to increase the propulsive force required to increase step length. Consequently, swing and stance toe-off greatly increased in the long step length condition. Short step length subjects had to adequately adjust step length, which decreased the speed of gait initiation. Loading the swing limb decreased the force and slope of the swing limb. Swing and stance toe-off was longest for the long step length condition, but there was a small difference of temporal events between no weight and weight condition. It appears that subjects modulated GRFs and temporal events differently to achieve the peak acceleration force of the swing and stance limb in response to different tasks. The findings from the current study provide preliminary data, which can be used to further investigate how we modulate forces during voluntary movement from a quiet stance. This information may be important if we are to use this or a similar task to evaluate gait patterns of the elderly and patient populations.

  • PDF